forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
cut-off-trees-for-golf-event.cpp
153 lines (140 loc) · 5.37 KB
/
cut-off-trees-for-golf-event.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
// Time: O(t * (logt + m * n)), t is the number of trees
// Space: O(t + m * n)
// Solution Reference:
// 1. https://discuss.leetcode.com/topic/103532/my-python-solution-inspired-by-a-algorithm/2
// 2. https://discuss.leetcode.com/topic/103562/python-solution-based-on-wufangjie-s-hadlock-s-algorithm
// 3. https://en.wikipedia.org/wiki/A*_search_algorithm
// 4. https://cg2010studio.files.wordpress.com/2011/12/dijkstra-vs-a-star.png
class Solution {
public:
int cutOffTree(vector<vector<int>>& forest) {
const auto m = forest.size(), n = forest[0].size();
priority_queue<pair<int, pair<int, int>>,
vector<pair<int, pair<int, int>>>,
greater<pair<int, pair<int, int>>> > min_heap;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (forest[i][j] > 1) {
min_heap.emplace(forest[i][j], make_pair(i, j));
}
}
}
pair<int, int> start;
int result = 0;
while (!min_heap.empty()) {
auto tree = min_heap.top(); min_heap.pop();
int step = minStep(forest, start, tree.second, m, n);
if (step < 0) {
return -1;
}
result += step;
start = tree.second;
}
return result;
}
private:
int minStep(const vector<vector<int>>& forest,
const pair<int, int>& start,
const pair<int, int>& end,
const int m, const int n) {
int min_steps = abs(start.first - end.first) + abs(start.second - end.second);
unordered_set<int> lookup;
vector<pair<int, int>> closer{start}, detour;
while (true) {
if (closer.empty()) { // cannot find a path in the closer expansions
if (detour.empty()) { // no other possible path
return -1;
}
// try other possible paths in detour expansions with extra 2-step cost
min_steps += 2;
swap(closer, detour);
}
int i, j;
tie(i, j) = closer.back(); closer.pop_back();
if (make_pair(i, j) == end) {
return min_steps;
}
if (!lookup.count(i * n + j)) {
lookup.emplace(i * n + j);
vector<pair<int, int>> expansions = {{i + 1, j}, {i - 1, j}, {i, j + 1}, {i, j - 1}};
for (const auto& expansion : expansions) {
int I, J;
tie(I, J) = expansion;
if (0 <= I && I < m && 0 <= J && J < n &&
forest[I][J] && !lookup.count(I * n + J)) {
bool is_closer = dot({I - i, J - j}, {end.first - i, end.second - j}) > 0;
is_closer ? closer.emplace_back(I, J) : detour.emplace_back(I, J);
}
}
}
}
return min_steps;
}
inline int dot(const pair<int, int>& a, const pair<int, int>& b) {
return a.first * b.first + a.second * b.second;
}
};
// Time: O(t * (logt + m * n)), t is the number of trees
// Space: O(t + m * n)
class Solution2 {
public:
int cutOffTree(vector<vector<int>>& forest) {
const auto m = forest.size(), n = forest[0].size();
priority_queue<pair<int, pair<int, int>>,
vector<pair<int, pair<int, int>>>,
greater<pair<int, pair<int, int>>> > min_heap;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (forest[i][j] > 1) {
min_heap.emplace(forest[i][j], make_pair(i, j));
}
}
}
pair<int, int> start;
int result = 0;
while (!min_heap.empty()) {
auto tree = min_heap.top(); min_heap.pop();
int step = minStep(forest, start, tree.second, m, n);
if (step < 0) {
return -1;
}
result += step;
start = tree.second;
}
return result;
}
private:
int minStep(const vector<vector<int>>& forest,
const pair<int, int>& start,
const pair<int, int>& end,
const int m, const int n) {
int min_steps = 0;
unordered_set<int> lookup;
queue<pair<int, int>> q;
q.emplace(start);
lookup.emplace(start.first * n + start.second);
while (!q.empty()) {
int size = q.size();
for (int i = 0; i < size; ++i) {
auto curr = q.front(); q.pop();
if (curr == end) {
return min_steps;
}
static const vector<pair<int, int>> directions{{0, -1}, {0, 1},
{-1, 0}, {1, 0}};
for (const auto& direction : directions) {
int i = curr.first + direction.first;
int j = curr.second + direction.second;
if (i < 0 || i >= m || j < 0 || j >= n ||
!forest[i][j] || lookup.count(i * n + j)) {
continue;
}
q.emplace(i, j);
lookup.emplace(i * n + j);
}
}
++min_steps;
}
return -1;
}
};