forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
magic-squares-in-grid.py
72 lines (67 loc) · 1.84 KB
/
magic-squares-in-grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Time: O(m * n)
# Space: O(1)
# A 3 x 3 magic square is a 3 x 3 grid filled with
# distinct numbers from 1 to 9 such that each row, column,
# and both diagonals all have the same sum.
#
# Given an grid of integers, how many 3 x 3 "magic square" subgrids are there?
# (Each subgrid is contiguous).
#
# Example 1:
#
# Input: [[4,3,8,4],
# [9,5,1,9],
# [2,7,6,2]]
# Output: 1
# Explanation:
# The following subgrid is a 3 x 3 magic square:
# 438
# 951
# 276
#
# while this one is not:
# 384
# 519
# 762
#
# In total, there is only one magic square inside the given grid.
# Note:
# - 1 <= grid.length <= 10
# - 1 <= grid[0].length <= 10
# - 0 <= grid[i][j] <= 15
try:
xrange # Python 2
except NameError:
xrange = range # Python 3
class Solution(object):
def numMagicSquaresInside(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
def magic(grid, r, c):
expect = k * (k**2+1) // 2
nums = set()
min_num = float("inf")
sum_diag, sum_anti = 0, 0
for i in xrange(k):
sum_diag += grid[r+i][c+i]
sum_anti += grid[r+i][c+k-1-i]
sum_r, sum_c = 0, 0
for j in xrange(k):
min_num = min(min_num, grid[r+i][c+j])
nums.add(grid[r+i][c+j])
sum_r += grid[r+i][c+j]
sum_c += grid[r+j][c+i]
if not (sum_r == sum_c == expect):
return False
return sum_diag == sum_anti == expect and \
len(nums) == k**2 and \
min_num == 1
k = 3
result = 0
for r in xrange(len(grid)-k+1):
for c in xrange(len(grid[r])-k+1):
if magic(grid, r, c):
result += 1
return result