diff --git a/Python/numbers-at-most-n-given-digit-set.py b/Python/numbers-at-most-n-given-digit-set.py new file mode 100644 index 000000000..fc69fca7e --- /dev/null +++ b/Python/numbers-at-most-n-given-digit-set.py @@ -0,0 +1,50 @@ +# Time: O(logn) +# Space: O(logn) + +# We have a sorted set of digits D, a non-empty subset of +# {'1','2','3','4','5','6','7','8','9'}. (Note that '0' is not included.) +# +# Now, we write numbers using these digits, using each digit as many times as we want. +# For example, if D = {'1','3','5'}, we may write numbers such as '13', '551', '1351315'. +# +# Return the number of positive integers that can be written (using the digits of D) +# that are less than or equal to N. +# +# Example 1: +# +# Input: D = ["1","3","5","7"], N = 100 +# Output: 20 +# Explanation: +# The 20 numbers that can be written are: +# 1, 3, 5, 7, 11, 13, 15, 17, 31, 33, 35, 37, 51, 53, 55, 57, 71, 73, 75, 77. +# Example 2: +# +# Input: D = ["1","4","9"], N = 1000000000 +# Output: 29523 +# Explanation: +# We can write 3 one digit numbers, 9 two digit numbers, 27 three digit numbers, +# 81 four digit numbers, 243 five digit numbers, 729 six digit numbers, +# 2187 seven digit numbers, 6561 eight digit numbers, and 19683 nine digit numbers. +# In total, this is 29523 integers that can be written using the digits of D. +# +# Note: +# - D is a subset of digits '1'-'9' in sorted order. +# - 1 <= N <= 10^9 + +class Solution(object): + def atMostNGivenDigitSet(self, D, N): + """ + :type D: List[str] + :type N: int + :rtype: int + """ + str_N = str(N) + set_D = set(D) + result = sum(len(D)**i for i in xrange(1, len(str_N))) + i = 0 + while i < len(str_N): + result += sum(c < str_N[i] for c in D) * (len(D)**(len(str_N)-i-1)) + if str_N[i] not in set_D: + break + i += 1 + return result + int(i == len(str_N))