-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbfr.py
303 lines (251 loc) · 14.2 KB
/
bfr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from pyspark import SparkContext,SparkConf
import os
import itertools
import random
from collections import defaultdict
import math
import sys
import csv
import json
import time
from kmeans_class import KMeans
def find_point_belonging(sumer_dict,threshold,d_index,d_features):
min_distance=float("inf")
belonging = -1
for k,v in sumer_dict.items():
temp_distance = calculate_mahalanobis_distance(d_features,v)
if temp_distance<min_distance:
min_distance=temp_distance
belonging = k
if min_distance < threshold:
return belonging,d_index
else:
return -1,d_index
def calculate_mahalanobis_distance(d_features,summerized):
centroid=[i/summerized["n"] for i in summerized["SUM"]]
differences = [x-y for (x,y) in zip(d_features,centroid)]
variances= [(x/summerized["n"])-(y/summerized["n"])**2 for (x,y) in zip(summerized["SUMSQ"],summerized["SUM"])]
distance = math.sqrt(sum([(x/math.sqrt(y))**2 for (x,y) in zip(differences,variances)]))
return distance
def find_nearest(cs_sum_dict,cs_index,cs_indexes,threshold):
cs1_summerized = cs_sum_dict[cs_index]
cs_centor = [ x/cs1_summerized["n"] for x in cs1_summerized["SUM"]]
final_min = float('inf')
for i in cs_indexes:
temp_summerized = cs_sum_dict[i]
temp_dis = calculate_mahalanobis_distance(cs_centor,temp_summerized)
if temp_dis < final_min:
final_min = temp_dis
belonging = i
if final_min< threshold:
return cs_index,belonging
else:
return cs_index,"no merge"
class BFR():
def __init__(self,inPath,k,outPath1,alpha = 2):
scConf = SparkConf() \
.setAppName('hw4') \
.setMaster('local[1]')
self.sc = SparkContext(conf=scConf)
self.sc.setLogLevel("WARN")
self.root_path = inPath
self.outPath1 = outPath1
self.ds_summerized_dict = defaultdict(dict)
self.first_round = True
self.alpha = alpha
self.k = k
self.ds = defaultdict(list)
self.cs_summerized_dict =defaultdict(dict)
self.cs = defaultdict(list)
self.rs=set()
self.cs_index=0
self.intermediate = []
def bfr(self):
for root, dirs, files in os.walk(self.root_path):
for cur_round,file in enumerate(files):
data_path = os.path.join(self.root_path,file)
if self.first_round:
print("Starting First Round......")
data_rdd = self.sc.textFile(data_path).map(lambda x: x.split(",")).map(lambda x:[float(i) for i in x]).map(lambda x: (int(x[0]),x[1:])).cache()
self.threshold = self.alpha*(len(data_rdd.take(1)[0][1])**0.5)
self.data_dict=dict(data_rdd.collect())
sample_data = dict(random.sample(self.data_dict.items(),int(0.1*len(self.data_dict))))
temp=KMeans(sample_data,self.k)
temp.fit()
data_to_be_summerized = temp.clusters_point
self.centroids= temp.centroids
for k,v in data_to_be_summerized.items():
ds_sum,ds_sumsq,ds_n = self.summerize(v)
self.ds_summerized_dict[k]["SUM"] = ds_sum
self.ds_summerized_dict[k]["SUMSQ"] = ds_sumsq
self.ds_summerized_dict[k]["n"] = ds_n
self.ds[k].extend(v)
for i in sample_data.keys():
self.data_dict.pop(i)
cent = self.centroids
summerized_dict = self.ds_summerized_dict
threshold=self.threshold
ds_candidate = self.sc.parallelize(self.data_dict.items()).map(lambda x: find_point_belonging(summerized_dict,threshold,x[0],x[1])).groupByKey().filter(lambda x: x[0] != -1).collectAsMap()
for k,v in ds_candidate.items():
self.ds[k].extend(list(v))
temp_sum,temp_sumsq,temp_n = self.summerize(v)
self.update_summerize(k,temp_sum,temp_sumsq,temp_n,True)
list(map(self.data_dict.pop, v))
print(len(self.data_dict))
kmean_to_rest = KMeans(self.data_dict,self.k)
kmean_to_rest.fit()
for k,v in kmean_to_rest.clusters_point.items():
if len(v) == 1:
self.rs.add(v[0])
else:
temp_sum,temp_sumsq,temp_n = self.summerize(v)
temp_key= "cs_%d"%self.cs_index
self.cs[temp_key].extend(v)
self.cs_summerized_dict[temp_key]={
"SUM": temp_sum,
"SUMSQ": temp_sumsq,
"n": temp_n
}
self.cs_index+=1
list(map(self.data_dict.pop, v))
self.first_round = False
nof_point_discard=sum([len(v) for k,v in self.ds.items()])
nof_cluster_compression = len(self.cs_summerized_dict)
nof_point_compression = sum([len(v) for k,v in self.cs.items()])
nof_point_retained = len(self.rs)
self.intermediate.append([cur_round+1, self.k, nof_point_discard, nof_cluster_compression, nof_point_compression,nof_point_retained])
print(f"First round finished:\nNumber of CS:\t{nof_cluster_compression}\nNumber of RS:\t{len(self.rs)}\nNumber of Clustered:\t{nof_point_discard}\nRemaining Data:\t{len(self.data_dict)}")
else:
print("Loading new")
ds_summerized_dict = self.ds_summerized_dict
threshold = self.threshold
data_rdd = self.sc.textFile(data_path).map(lambda x: x.split(",")).map(lambda x:[float(i) for i in x]).map(lambda x: (int(x[0]),x[1:]))
self.data_dict.update(dict(data_rdd.collect()))
print(len(self.data_dict))
ds_candidate = data_rdd.map(lambda x: find_point_belonging(ds_summerized_dict,threshold,x[0],x[1])).groupByKey().collectAsMap()
points_need_to_be_assigned=[]
for k,v in ds_candidate.items():
if k != -1:
self.ds[k].extend(list(v))
temp_sum,temp_sumsq,temp_n = self.summerize(v)
self.update_summerize(k,temp_sum,temp_sumsq,temp_n,True)
list(map(self.data_dict.pop, v))
else:
points_need_to_be_assigned.extend(list(v))
print(f"Finished generating ds candidate\t|\tRemaining Data:\t{len(self.data_dict)}")
cs_summerized_dict = self.cs_summerized_dict
points_need_to_be_assigned=list(map(lambda x:(x,self.data_dict[x]),points_need_to_be_assigned))
cs_candidate = self.sc.parallelize(points_need_to_be_assigned).map(lambda x: find_point_belonging(cs_summerized_dict,threshold,x[0],x[1])).groupByKey().filter(lambda x: x[0] != -1).collectAsMap()
for k,v in cs_candidate.items():
temp_sum,temp_sumsq,temp_n = self.summerize(v)
temp_key= "cs_%d"%self.cs_index
self.cs[temp_key].extend(v)
self.cs_summerized_dict[temp_key]={
"SUM": temp_sum,
"SUMSQ": temp_sumsq,
"n": temp_n
}
self.cs_index += 1
list(map(self.data_dict.pop, v))
print(f"Finished generating cs candidate\t|\tRemaining Data:\t{len(self.data_dict)}")
print("Running K-Means to rest of data")
kmean_to_rest = KMeans(self.data_dict,self.k)
kmean_to_rest.fit()
for k,v in kmean_to_rest.clusters_point.items():
if len(v) == 1:
self.rs.add(v[0])
else:
temp_sum,temp_sumsq,temp_n = self.summerize(v)
temp_key= "ds_%d"%self.cs_index
self.cs[temp_key].extend(v)
self.cs_summerized_dict[temp_key]={
"SUM": temp_sum,
"SUMSQ": temp_sumsq,
"n": temp_n
}
self.cs_index += 1
list(map(self.data_dict.pop, v))
self.rs = self.rs.difference(set(v))
self.merge_cs()
nof_point_discard=sum([len(v) for k,v in self.ds.items()])
nof_cluster_compression = len(self.cs_summerized_dict)
nof_point_compression = sum([len(v) for k,v in self.cs.items()])
nof_point_retained = len(self.rs)
if cur_round < len(files)-1:
self.intermediate.append([cur_round+1, self.k, nof_point_discard, nof_cluster_compression, nof_point_compression,nof_point_retained])
print(f"Round finished:\nNumber of CS:\t{len(self.cs_summerized_dict)}\nNumber of RS:\t{len(self.rs)}\nNumber of Clustered:\t{sum([len(v) for k,v in self.ds.items()])}\nRemaining Data:\t{len(self.data_dict)}")
for k,v in self.cs_summerized_dict.items():
cs_centroid= [x/v["n"] for x in v["SUM"]]
ds_belonging = self.find_nearest_ds(cs_centroid)
self.ds[ds_belonging].extend(self.cs[k])
self.cs.pop(k)
self.cs_summerized_dict.clear()
for i in self.rs:
cur_point = self.data_dict[i]
ds_belonging = self.find_nearest_ds(cur_point)
self.ds[ds_belonging].append(i)
self.data_dict.pop(i)
self.rs.clear()
nof_point_discard=sum([len(v) for k,v in self.ds.items()])
nof_cluster_compression = len(self.cs_summerized_dict)
nof_point_compression = sum([len(v) for k,v in self.cs.items()])
nof_point_retained = len(self.rs)
self.intermediate.append([cur_round+1, self.k, nof_point_discard, nof_cluster_compression, nof_point_compression,nof_point_retained])
ds=self.ds
with open(self.outPath1,"w") as f:
result = self.sc.parallelize(ds.items()).flatMap(lambda x: [(j,x[0]) for j in x[1]]).sortBy(lambda x: x[0]).collectAsMap()
json.dump(result,f)
self.sc.stop()
def find_nearest_ds(self,center):
final_min=float("inf")
for k,v in self.ds_summerized_dict.items():
temp_dis = calculate_mahalanobis_distance(center,v)
if temp_dis<final_min:
belonging = k
final_min = temp_dis
return belonging
def merge_cs(self):
combinations = list(itertools.combinations(sorted(self.cs_summerized_dict.keys()),2))
cs_summerized_dict = self.cs_summerized_dict
threshold= self.threshold
pair_to_be_merged = self.sc.parallelize(combinations).groupByKey().map(lambda x:find_nearest(cs_summerized_dict,x[0],list(x[1]),threshold)).filter(lambda x: x[1] != "no merge").map(lambda x: tuple(sorted(x))).distinct().collect()
print("Merging CS......")
for i in pair_to_be_merged:
cur_summerized = self.cs_summerized_dict[i[0]]
cur_sum = cur_summerized["SUM"]
cur_sumsq = cur_summerized["SUMSQ"]
cur_n = cur_summerized["n"]
self.update_summerize(i[1],cur_sum,cur_sumsq, cur_n,False)
self.cs_summerized_dict.pop(i[0])
self.cs[i[1]].extend(self.cs[i[0]])
self.cs.pop(i[0])
def update_summerize(self,cluster_index,addition_sum,addition_sumsq,addition_n,ds_or_not):
if ds_or_not:
self.ds_summerized_dict[cluster_index]["SUM"]=[sum(i) for i in zip(self.ds_summerized_dict[cluster_index]["SUM"],addition_sum)]
self.ds_summerized_dict[cluster_index]["SUMSQ"]=[sum(i) for i in zip(self.ds_summerized_dict[cluster_index]["SUMSQ"],addition_sumsq)]
self.ds_summerized_dict[cluster_index]["n"] += addition_n
else:
self.cs_summerized_dict[cluster_index]["SUM"]=[sum(i) for i in zip(self.cs_summerized_dict[cluster_index].get("SUM",[0]*len(addition_sum)),addition_sum)]
self.cs_summerized_dict[cluster_index]["SUMSQ"]=[sum(i) for i in zip(self.cs_summerized_dict[cluster_index].get("SUMSQ",[0]*len(addition_sumsq)),addition_sumsq)]
self.cs_summerized_dict[cluster_index]["n"] = self.cs_summerized_dict[cluster_index].get("n",0) + addition_n
def summerize(self,points_index):
index_to_features = [self.data_dict[i] for i in points_index]
sum_ = [sum(i) for i in zip(*index_to_features)]
sumsq = [sum(map(lambda x: x**2,i)) for i in zip(*index_to_features)]
n = len(points_index)
return sum_,sumsq,n
def main(inFile,n_cluster,outFile_1,outFile_2):
bfr= BFR(inPath=inFile,k=n_cluster,outPath1=outFile_1)
bfr.bfr()
out_f2 = open(outFile_2,"w")
writer = csv.writer(out_f2)
writer.writerow(["round_id","nof_cluster_discard","nof_point_discard","nof_cluster_compression","nof_point_compression","nof_point_retained"])
writer.writerows(bfr.intermediate)
if __name__ =="__main__":
inPath = sys.argv[1]
ncluster = int(sys.argv[2])
outPath_1 = sys.argv[3]
outPath_2 = sys.argv[4]
starttime=time.time()
main(inPath,ncluster,outPath_1,outPath_2)
print("Total Running Time:\t",time.time()-starttime)