+Operations on floating-point values (of type `f32` and `f64`) are famously subtle. One of the reasons for this is the existence of "NaN values": this is short for "not a number", and is used to represent e.g. the result of `0.0 / 0.0`. What makes NaN values subtle is that more than one possible NaN value exists: a NaN value has a sign that can be checked with `f.is_sign_positive()`, and it has a "payload" that can be extracted with `f.to_bits()` -- however, both are entirely ignored by `==` (which always returns `false` on a NaN). Despite very successful efforts to standardize the behavior of floating-point operations across hardware architectures, the details of when a NaN is positive or negative and what its exact payload is differ across architectures. To make matters even more complicated, Rust and its LLVM backend apply optimizations to floating-point operations when the exact numeric result is guaranteed not to change, but those optimizations can change which NaN value is produced. For instance, `f * 1.0` may be optimized to just `f`. However, if `f` is a NaN, this can change the exact bit pattern of the result!
0 commit comments