-
Notifications
You must be signed in to change notification settings - Fork 47
/
dpn.py
342 lines (286 loc) · 13 KB
/
dpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
""" PyTorch implementation of DualPathNetworks
Based on original MXNet implementation https://github.com/cypw/DPNs with
many ideas from another PyTorch implementation https://github.com/oyam/pytorch-DPNs.
This implementation is compatible with the pretrained weights
from cypw's MXNet implementation.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
from torch.hub import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url
from collections import OrderedDict
from adaptive_avgmax_pool import adaptive_avgmax_pool2d
__all__ = ['DPN', 'dpn68', 'dpn68b', 'dpn92', 'dpn98', 'dpn131', 'dpn107']
model_urls = {
'dpn68':
'https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn68-66bebafa7.pth',
'dpn68b-extra':
'https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn68b_extra-84854c156.pth',
'dpn92-extra':
'https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn92_extra-b040e4a9b.pth',
'dpn98':
'https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn98-5b90dec4d.pth',
'dpn131':
'https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn131-71dfe43e0.pth',
'dpn107-extra':
'https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn107_extra-1ac7121e2.pth'
}
def dpn68(pretrained=False, test_time_pool=False, **kwargs):
"""Constructs a DPN-68 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet-1K
test_time_pool (bool): If True, pools features for input resolution beyond
standard 224x224 input with avg+max at inference/validation time
**kwargs : Keyword args passed to model __init__
num_classes (int): Number of classes for classifier linear layer, default=1000
"""
model = DPN(
small=True, num_init_features=10, k_r=128, groups=32,
k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64),
test_time_pool=test_time_pool, **kwargs)
if pretrained:
model.load_state_dict(load_state_dict_from_url(model_urls['dpn68']))
return model
def dpn68b(pretrained=False, test_time_pool=False, **kwargs):
"""Constructs a DPN-68b model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet-1K
test_time_pool (bool): If True, pools features for input resolution beyond
standard 224x224 input with avg+max at inference/validation time
**kwargs : Keyword args passed to model __init__
num_classes (int): Number of classes for classifier linear layer, default=1000
"""
model = DPN(
small=True, num_init_features=10, k_r=128, groups=32,
b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64),
test_time_pool=test_time_pool, **kwargs)
if pretrained:
model.load_state_dict(load_state_dict_from_url(model_urls['dpn68b-extra']))
return model
def dpn92(pretrained=False, test_time_pool=False, **kwargs):
"""Constructs a DPN-92 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet-1K
test_time_pool (bool): If True, pools features for input resolution beyond
standard 224x224 input with avg+max at inference/validation time
**kwargs : Keyword args passed to model __init__
num_classes (int): Number of classes for classifier linear layer, default=1000
"""
model = DPN(
num_init_features=64, k_r=96, groups=32,
k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128),
test_time_pool=test_time_pool, **kwargs)
if pretrained:
model.load_state_dict(load_state_dict_from_url(model_urls['dpn92-extra']))
return model
def dpn98(pretrained=False, test_time_pool=False, **kwargs):
"""Constructs a DPN-98 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet-1K
test_time_pool (bool): If True, pools features for input resolution beyond
standard 224x224 input with avg+max at inference/validation time
**kwargs : Keyword args passed to model __init__
num_classes (int): Number of classes for classifier linear layer, default=1000
"""
model = DPN(
num_init_features=96, k_r=160, groups=40,
k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128),
test_time_pool=test_time_pool, **kwargs)
if pretrained:
model.load_state_dict(load_state_dict_from_url(model_urls['dpn98']))
return model
def dpn131(pretrained=False, test_time_pool=False, **kwargs):
"""Constructs a DPN-131 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet-1K
test_time_pool (bool): If True, pools features for input resolution beyond
standard 224x224 input with avg+max at inference/validation time
**kwargs : Keyword args passed to model __init__
num_classes (int): Number of classes for classifier linear layer, default=1000
"""
model = DPN(
num_init_features=128, k_r=160, groups=40,
k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128),
test_time_pool=test_time_pool, **kwargs)
if pretrained:
model.load_state_dict(load_state_dict_from_url(model_urls['dpn131']))
return model
def dpn107(pretrained=False, test_time_pool=False, **kwargs):
"""Constructs a DPN-107 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet-1K
test_time_pool (bool): If True, pools features for input resolution beyond
standard 224x224 input with avg+max at inference/validation time
**kwargs : Keyword args passed to model __init__
num_classes (int): Number of classes for classifier linear layer, default=1000
"""
model = DPN(
num_init_features=128, k_r=200, groups=50,
k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128),
test_time_pool=test_time_pool, **kwargs)
if pretrained:
model.load_state_dict(load_state_dict_from_url(model_urls['dpn107-extra']))
return model
class CatBnAct(nn.Module):
def __init__(self, in_chs, activation_fn=nn.ReLU(inplace=True)):
super(CatBnAct, self).__init__()
self.bn = nn.BatchNorm2d(in_chs, eps=0.001)
self.act = activation_fn
def forward(self, x):
x = torch.cat(x, dim=1) if isinstance(x, tuple) else x
return self.act(self.bn(x))
class BnActConv2d(nn.Module):
def __init__(self, in_chs, out_chs, kernel_size, stride,
padding=0, groups=1, activation_fn=nn.ReLU(inplace=True)):
super(BnActConv2d, self).__init__()
self.bn = nn.BatchNorm2d(in_chs, eps=0.001)
self.act = activation_fn
self.conv = nn.Conv2d(in_chs, out_chs, kernel_size, stride, padding, groups=groups, bias=False)
def forward(self, x):
return self.conv(self.act(self.bn(x)))
class InputBlock(nn.Module):
def __init__(self, num_init_features, kernel_size=7,
padding=3, activation_fn=nn.ReLU(inplace=True)):
super(InputBlock, self).__init__()
self.conv = nn.Conv2d(
3, num_init_features, kernel_size=kernel_size, stride=2, padding=padding, bias=False)
self.bn = nn.BatchNorm2d(num_init_features, eps=0.001)
self.act = activation_fn
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
x = self.pool(x)
return x
class DualPathBlock(nn.Module):
def __init__(
self, in_chs, num_1x1_a, num_3x3_b, num_1x1_c, inc, groups, block_type='normal', b=False):
super(DualPathBlock, self).__init__()
self.num_1x1_c = num_1x1_c
self.inc = inc
self.b = b
if block_type == 'proj':
self.key_stride = 1
self.has_proj = True
elif block_type == 'down':
self.key_stride = 2
self.has_proj = True
else:
assert block_type == 'normal'
self.key_stride = 1
self.has_proj = False
if self.has_proj:
# Using different member names here to allow easier parameter key matching for conversion
if self.key_stride == 2:
self.c1x1_w_s2 = BnActConv2d(
in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=2)
else:
self.c1x1_w_s1 = BnActConv2d(
in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=1)
self.c1x1_a = BnActConv2d(in_chs=in_chs, out_chs=num_1x1_a, kernel_size=1, stride=1)
self.c3x3_b = BnActConv2d(
in_chs=num_1x1_a, out_chs=num_3x3_b, kernel_size=3,
stride=self.key_stride, padding=1, groups=groups)
if b:
self.c1x1_c = CatBnAct(in_chs=num_3x3_b)
self.c1x1_c1 = nn.Conv2d(num_3x3_b, num_1x1_c, kernel_size=1, bias=False)
self.c1x1_c2 = nn.Conv2d(num_3x3_b, inc, kernel_size=1, bias=False)
else:
self.c1x1_c = BnActConv2d(in_chs=num_3x3_b, out_chs=num_1x1_c + inc, kernel_size=1, stride=1)
def forward(self, x):
x_in = torch.cat(x, dim=1) if isinstance(x, tuple) else x
if self.has_proj:
if self.key_stride == 2:
x_s = self.c1x1_w_s2(x_in)
else:
x_s = self.c1x1_w_s1(x_in)
x_s1 = x_s[:, :self.num_1x1_c, :, :]
x_s2 = x_s[:, self.num_1x1_c:, :, :]
else:
x_s1 = x[0]
x_s2 = x[1]
x_in = self.c1x1_a(x_in)
x_in = self.c3x3_b(x_in)
if self.b:
x_in = self.c1x1_c(x_in)
out1 = self.c1x1_c1(x_in)
out2 = self.c1x1_c2(x_in)
else:
x_in = self.c1x1_c(x_in)
out1 = x_in[:, :self.num_1x1_c, :, :]
out2 = x_in[:, self.num_1x1_c:, :, :]
resid = x_s1 + out1
dense = torch.cat([x_s2, out2], dim=1)
return resid, dense
class DPN(nn.Module):
def __init__(self, small=False, num_init_features=64, k_r=96, groups=32,
b=False, k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128),
num_classes=1000, test_time_pool=False):
super(DPN, self).__init__()
self.test_time_pool = test_time_pool
self.b = b
bw_factor = 1 if small else 4
blocks = OrderedDict()
# conv1
if small:
blocks['conv1_1'] = InputBlock(num_init_features, kernel_size=3, padding=1)
else:
blocks['conv1_1'] = InputBlock(num_init_features, kernel_size=7, padding=3)
# conv2
bw = 64 * bw_factor
inc = inc_sec[0]
r = (k_r * bw) // (64 * bw_factor)
blocks['conv2_1'] = DualPathBlock(num_init_features, r, r, bw, inc, groups, 'proj', b)
in_chs = bw + 3 * inc
for i in range(2, k_sec[0] + 1):
blocks['conv2_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b)
in_chs += inc
# conv3
bw = 128 * bw_factor
inc = inc_sec[1]
r = (k_r * bw) // (64 * bw_factor)
blocks['conv3_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b)
in_chs = bw + 3 * inc
for i in range(2, k_sec[1] + 1):
blocks['conv3_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b)
in_chs += inc
# conv4
bw = 256 * bw_factor
inc = inc_sec[2]
r = (k_r * bw) // (64 * bw_factor)
blocks['conv4_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b)
in_chs = bw + 3 * inc
for i in range(2, k_sec[2] + 1):
blocks['conv4_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b)
in_chs += inc
# conv5
bw = 512 * bw_factor
inc = inc_sec[3]
r = (k_r * bw) // (64 * bw_factor)
blocks['conv5_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b)
in_chs = bw + 3 * inc
for i in range(2, k_sec[3] + 1):
blocks['conv5_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b)
in_chs += inc
blocks['conv5_bn_ac'] = CatBnAct(in_chs)
self.features = nn.Sequential(blocks)
# Using 1x1 conv for the FC layer to allow the extra pooling scheme
self.classifier = nn.Conv2d(in_chs, num_classes, kernel_size=1, bias=True)
def forward(self, x):
x = self.features(x)
if not self.training and self.test_time_pool:
x = F.avg_pool2d(x, kernel_size=7, stride=1)
out = self.classifier(x)
# The extra test time pool should be pooling an img_size//32 - 6 size patch
out = adaptive_avgmax_pool2d(out, pool_type='avgmax')
else:
x = adaptive_avgmax_pool2d(x, pool_type='avg')
out = self.classifier(x)
return out.view(out.size(0), -1)