forked from albertz/subword-nmt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
learn_joint_bpe_and_vocab.py
executable file
·125 lines (98 loc) · 4.61 KB
/
learn_joint_bpe_and_vocab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Author: Rico Sennrich
"""Use byte pair encoding (BPE) to learn a variable-length encoding of the vocabulary in a text.
This script learns BPE jointly on a concatenation of a list of texts (typically the source and target side of a parallel corpus,
applies the learned operation to each and (optionally) returns the resulting vocabulary of each text.
The vocabulary can be used in apply_bpe.py to avoid producing symbols that are rare or OOV in a training text.
Reference:
Rico Sennrich, Barry Haddow and Alexandra Birch (2016). Neural Machine Translation of Rare Words with Subword Units.
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany.
"""
from __future__ import unicode_literals
import sys
import os
import codecs
import argparse
import tempfile
from collections import Counter
import learn_bpe
import apply_bpe
# hack for python2/3 compatibility
from io import open
argparse.open = open
def create_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
parser.add_argument(
'--input', '-i', type=argparse.FileType('r'), required=True, nargs = '+',
metavar='PATH',
help="Input texts (multiple allowed).")
parser.add_argument(
'--output', '-o', type=argparse.FileType('w'), required=True,
metavar='PATH',
help="Output file for BPE codes.")
parser.add_argument(
'--symbols', '-s', type=int, default=10000,
help="Create this many new symbols (each representing a character n-gram) (default: %(default)s))")
parser.add_argument(
'--separator', type=str, default='@@', metavar='STR',
help="Separator between non-final subword units (default: '%(default)s'))")
parser.add_argument(
'--write-vocabulary', type=argparse.FileType('w'), nargs = '+', default=None,
metavar='PATH', dest='vocab',
help='Write to these vocabulary files after applying BPE. One per input text. Used for filtering in apply_bpe.py')
parser.add_argument(
'--min-frequency', type=int, default=2, metavar='FREQ',
help='Stop if no symbol pair has frequency >= FREQ (default: %(default)s))')
parser.add_argument(
'--verbose', '-v', action="store_true",
help="verbose mode.")
return parser
if __name__ == '__main__':
# python 2/3 compatibility
if sys.version_info < (3, 0):
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
else:
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer)
parser = create_parser()
args = parser.parse_args()
if args.vocab and len(args.input) != len(args.vocab):
sys.stderr.write('Error: number of input files and vocabulary files must match\n')
sys.exit(1)
# read/write files as UTF-8
args.input = [codecs.open(f.name, encoding='UTF-8') for f in args.input]
args.vocab = [codecs.open(f.name, 'w', encoding='UTF-8') for f in args.vocab]
# get combined vocabulary of all input texts
full_vocab = Counter()
for f in args.input:
full_vocab += learn_bpe.get_vocabulary(f)
f.seek(0)
vocab_list = ['{0} {1}'.format(key, freq) for (key, freq) in full_vocab.items()]
# learn BPE on combined vocabulary
with codecs.open(args.output.name, 'w', encoding='UTF-8') as output:
learn_bpe.main(vocab_list, output, args.symbols, args.min_frequency, args.verbose, is_dict=True)
with codecs.open(args.output.name, encoding='UTF-8') as codes:
bpe = apply_bpe.BPE(codes, separator=args.separator)
# apply BPE to each training corpus and get vocabulary
for train_file, vocab_file in zip(args.input, args.vocab):
tmp = tempfile.NamedTemporaryFile(delete=False)
tmp.close()
tmpout = codecs.open(tmp.name, 'w', encoding='UTF-8')
train_file.seek(0)
for line in train_file:
tmpout.write(bpe.segment(line).strip())
tmpout.write('\n')
tmpout.close()
tmpin = codecs.open(tmp.name, encoding='UTF-8')
vocab = learn_bpe.get_vocabulary(tmpin)
tmpin.close()
os.remove(tmp.name)
for key, freq in sorted(vocab.items(), key=lambda x: x[1], reverse=True):
vocab_file.write("{0} {1}\n".format(key, freq))
vocab_file.close()