-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgatsby-node.js
389 lines (344 loc) · 10 KB
/
gatsby-node.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
const path = require(`path`)
const parse = require("date-fns/parse")
const getTime = require("date-fns/getTime")
const formatDate = require("date-fns/format")
const populations = require("./src/utils/populations")
const slugify = require("slugify")
const memoize = require("memoize-one")
const cleanupTownName = t => {
let n = t.replace(/[0-9,\*]/gi, "")
if (n === "Unknown town") return "Unknown"
return n
}
const formatCaseCountNumber = n => {
return n.replace(/[,]/gi, "")
}
const trimAndParseInt = str => {
try {
return parseInt(str.trim().replace(",", ""))
} catch (err) {
return 0
}
}
const parseReportDate = memoize(dateStr => {
return parse(dateStr, "M/d/yy", new Date())
})
function getNormalizedCount(City_Town, Report_Date, Total_Case_Count) {
const d = parseReportDate(Report_Date)
const ts = getTime(d)
const total = isNaN(Total_Case_Count) ? 0 : parseInt(Total_Case_Count)
return {
dateStr: Report_Date,
shortDateStr: formatDate(d, "M/d/yy"),
weekNumber: formatDate(d, "I"),
year: formatDate(d, "yy"),
timestamp: ts,
totalCount: total < 0 ? 0 : total,
}
}
function getCountsByTown(nodes = []) {
nodes = nodes.filter(n => {
return (
!n.City_Town.includes("State") &&
!n.City_Town.includes("All of Massachusetts")
)
})
return nodes.reduce(
(final, { City_Town, Report_Date, Total_Case_Count, Total_Case_Rate }) => {
const name = cleanupTownName(City_Town)
final[name] = final[name] || {
town: name,
color: 'black',
counts: [],
}
final[name].counts.push(
getNormalizedCount(
name,
Report_Date,
formatCaseCountNumber(Total_Case_Count)
)
)
return final
},
{}
)
}
function combineNormalizedCounts(nodes = []) {
return nodes.reduce((final, current, i) => {
let townCounts = getCountsByTown(current)
if (Object.keys(final).length === 0) return townCounts
Object.entries(townCounts).map(([key, val]) => {
const name = cleanupTownName(key)
final[name] = final[name] || {
town: name,
counts: [],
}
final[name].counts = [...final[name].counts, ...val.counts]
})
return final
}, {})
}
exports.createPages = async ({ graphql, actions }) => {
const { createPage } = actions
const results = await graphql(`
query {
allSchoolsCsvSheet1 {
nodes {
Report_Date
Code
City_Town: Name
Students
Staff
}
}
allSy21EnrollmentsCsvSheet1 {
nodes {
name: District_Name
enrollment: Total_Enrollment
}
}
allData4222020Through5202020CsvSheet1 {
nodes {
id
City_Town
Report_Date
Total_Case_Count
Total_Case_Rate
}
}
allData5272020Through07082020CsvSheet1 {
nodes {
City_Town
Report_Date
Total_Case_Count
id
Total_Case_Rate
TotalTested_Rate
Total_Persons_Tested
Percent_Positive__Last_14_days_
}
}
allData7152020Through8052020CsvSheet1 {
nodes {
City_Town
id
Report_Date
Total_Case_Count
Percent_Positivity__Last_14_Days_
Total_Positive_Tests__Last_14_days_
Total_Tested
Total_Tested__Last_14_days_
Case_Count__Last_14_Days_
}
}
allData08122020Through12172020CsvSheet1 {
nodes {
City_Town
Report_Date
Percent_Positivity
Total_Case_Count
Total_Positive_Tests
Total_Tests
Total_Tests_Last_Two_Weeks
Two_Week_Case_Counts
Change_Since_Last_Week
Average_Daily_Rate
}
}
allData12242020Through06312021XlsxWeeklyCityTown {
nodes {
City_Town
id
Report_Date
Total_Case_Count: Total_Case_Counts
Total_Positive_Tests
Total_Tests
Total_Tests_Last_Two_Weeks
Two_Week_Case_Counts
Testing_Rate
Average_Daily_Rate
}
}
allLatestXlsxWeeklyCityTown {
nodes {
City_Town
id
Report_Date
Total_Case_Count: Total_Case_Counts
Total_Positive_Tests
Total_Tests
Total_Tests_Last_Two_Weeks
Two_Week_Case_Counts
Testing_Rate
Average_Daily_Rate
}
}
vaccinations: allVaccinationsXlsxAgeMunicipality {
nodes {
town: _xEMPTY
ageGroup: _xEMPTYx1
population: _xEMPTYx2
proportionOfTownPopulation: _xEMPTYx3
oneDose: _xEMPTYx4
oneDosePerCapita: _xEMPTYx5
oneDoseProporationOfTown: _xEMPTYx6
fullyVaccinated: _xEMPTYx7
fullyVaccinatedPerCapita: _xEMPTYx8
fullyVaccinatedProportionOfTown: _xEMPTYx9
partiallyVaccinated: _xEMPTYx10
partiallyVaccinatedPerCapita: _xEMPTYx11
partiallyVaccinatedProportionOfTown: _xEMPTYx12
}
}
}
`)
let allNormalized = combineNormalizedCounts([
results.data.allData4222020Through5202020CsvSheet1.nodes,
results.data.allData5272020Through07082020CsvSheet1.nodes,
results.data.allData7152020Through8052020CsvSheet1.nodes,
results.data.allData08122020Through12172020CsvSheet1.nodes,
results.data.allLatestXlsxWeeklyCityTown.nodes,
])
const schoolEnrollments = results.data.allSy21EnrollmentsCsvSheet1.nodes.reduce((final, {name, enrollment}) => {
final[name] = enrollment || 0;
return final
}, {})
/* Organize the flattened list of school counts by Town and Date
so it's easier to look up. */
const schoolCountsByTown = results.data.allSchoolsCsvSheet1.nodes.reduce(
(final, { Report_Date, Code, City_Town, Students, Staff }) => {
const name = cleanupTownName(City_Town || "Unknown Town")
const d = parseReportDate(Report_Date)
const year = formatDate(d, "yy")
const weekNumber = formatDate(d, "I")
let enrollment = 0;
try {
parseInt(enrollment = schoolEnrollments[name])
} catch (err) {};
const studentRate = Students * 100000 / enrollment;
const staffRate = Staff * 100000 / enrollment;
final[name] = final[name] || {}
final[name][year] = final[name][year] || {}
final[name][year] = {
...final[name][year],
[weekNumber]: {
students: Students,
staff: Staff,
studentsPer100000Students: isNaN(studentRate) ? 0 : studentRate,
staffPer100000Students: isNaN(staffRate) ? 0 : staffRate,
},
}
return final
},
{}
)
/* Add in school counts */
Object.keys(allNormalized).map(townName => {
allNormalized[townName].counts.map((count, i) => {
const d = parseReportDate(count.dateStr)
const year = formatDate(d, "yy")
const decimalPlaces = (num) => {
return parseFloat(parseFloat(num).toFixed(1))
}
try {
const schoolCount = schoolCountsByTown[townName][year][count.weekNumber]
allNormalized[townName].counts[i] = {
...count,
newStudentCases: schoolCount.students
? parseInt(schoolCount.students)
: 0,
newStaffCases: schoolCount.staff ? parseInt(schoolCount.staff) : 0,
newStudentCasesPerHundredThousand: schoolCount.studentsPer100000Students ? decimalPlaces(schoolCount.studentsPer100000Students) : 0,
newStaffCasesPerHundredThousand: schoolCount.staffPer100000Students ? decimalPlaces(schoolCount.staffPer100000Students) : 0,
}
} catch (err) {
allNormalized[townName].counts[i] = {
...count,
newStudentCases: 0,
newStaffCases: 0,
newStudentCasesPerHundredThousand: 0.0,
newStaffCasesPerHundredThousand: 0.0,
}
}
})
})
/* Add in statewide totals */
const dailyTotals = {}
Object.values(allNormalized).map(({ town, counts }) => {
counts.map(c => {
dailyTotals[c.shortDateStr] = dailyTotals[c.shortDateStr] || 0
dailyTotals[c.shortDateStr] = dailyTotals[c.shortDateStr] + c.totalCount
})
})
allNormalized["State"] = {
town: "State",
color: 'black',
counts: Object.entries(dailyTotals).map(
([Report_Date, Total_Case_Count]) => {
return getNormalizedCount("State", Report_Date, Total_Case_Count)
}
),
}
/* End statewide totals */
Object.values(allNormalized).map(({ town, counts }) => {
counts.sort((a, b) => {
return a.timestamp - b.timestamp
})
counts.map((count, i) => {
if (i === 0) {
count.changeSinceLastCount = 0
return
}
let change = count.totalCount - counts[i - 1].totalCount
if (change < 0) {
change = 0;
}
counts[i] = {
...count,
changeSinceLastCount: change,
changePer100k: Math.round((change * 100000) / populations[town]),
twoCountAverageChange: Math.round(
(change + counts[i - 1].changeSinceLastCount) / 2
),
}
})
})
const vaccinations = results.data.vaccinations.nodes.reduce(
(final, current) => {
const {
town
} = current
if (town === "Town") return final
let color = "black"
try {
color = allNormalized[town].color
} catch (err) {}
final[town] = final[town] || []
final[town].push(current)
return final
},
{}
)
const productTemplate = path.resolve(`src/templates/index.js`)
createPage({
path: `/`,
component: productTemplate,
context: {
townCounts: allNormalized,
vaccinations,
},
})
if (process.env.NODE_ENV === "production") {
Object.keys(populations).map(townName => {
createPage({
path: `/${slugify(townName, { lower: true })}/`,
component: productTemplate,
context: {
townCounts: allNormalized,
townName: townName,
vaccinations,
},
})
})
}
}