Code for the Neural GPU model as described in [[http://arxiv.org/abs/1511.08228]].
Requirements:
- TensorFlow (see tensorflow.org for how to install)
- Matplotlib for Python (sudo apt-get install python-matplotlib)
The model can be trained on the following algorithmic tasks:
sort
- Sort a symbol listkvsort
- Sort symbol keys in dictionaryid
- Return the same symbol listrev
- Reverse a symbol listrev2
- Reverse a symbol dictionary by keyincr
- Add one to a symbol valueadd
- Long decimal additionleft
- First symbol in listright
- Last symbol in listleft-shift
- Left shift a symbol listright-shift
- Right shift a symbol listbmul
- Long binary multiplicationmul
- Long decimal multiplicationdup
- Duplicate a symbol list with paddingbadd
- Long binary additionqadd
- Long quaternary additionsearch
- Search for symbol key in dictionary
The value range for symbols are defined by the niclass
and noclass
flags.
In particular, the values are in the range min(--niclass, noclass) - 1
.
So if you set --niclass=33
and --noclass=33
(the default) then --task=rev
will be reversing lists of 32 symbols, and --task=id
will be identity on a
list of up to 32 symbols.
To train the model on the reverse task run:
python neural_gpu_trainer.py --task=rev
While training, interim / checkpoint model parameters will be
written to /tmp/neural_gpu/
.
Once the amount of error gets down to what you're comfortable
with, hit Ctrl-C
to stop the training process. The latest
model parameters will be in /tmp/neural_gpu/neural_gpu.ckpt-<step>
and used on any subsequent run.
To test a trained model on how well it decodes run:
python neural_gpu_trainer.py --task=rev --mode=1
To produce an animation of the result run:
python neural_gpu_trainer.py --task=rev --mode=1 --animate=True
Maintained by Lukasz Kaiser (lukaszkaiser)