-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtagging.py
386 lines (327 loc) · 14.8 KB
/
tagging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import datetime
import os, time
import pandas as pd
import argparse
import traceback, sys
import re
from pathlib import Path
from typing import List, Tuple, Dict, Any, Optional, Callable, Protocol
import numpy as np
from numpy import signedinteger
from PIL import Image
import timm
from timm.data import create_transform, resolve_data_config
import torch
from torch import Tensor, nn
from torch.nn import functional as F
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
import concurrent.futures
kaomojis: List[str] = [
"0_0",
"(o)_(o)",
"+_+",
"+_-",
"._.",
"<o>_<o>",
"<|>_<|>",
"=_=",
">_<",
"3_3",
"6_9",
">_o",
"@_@",
"^_^",
"o_o",
"u_u",
"x_x",
"|_|",
"||_||",
]
TAGGER_VIT_MODEL_REPO: str = "SmilingWolf/wd-eva02-large-tagger-v3"
EXTENSIONS: List[str] = ['.png', '.jpg', '.jpeg', ".PNG", ".JPG", ".JPEG"]
BATCH_SIZE: int = 10 # max size for M1 MBA GPU
PROGRESS_INTERVAL: int = 1000
WORKER_NUM: int = 8
torch_device = torch.device("cpu")
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# for apple silicon
if torch.backends.mps.is_available():
torch_device = torch.device("mps")
def mcut_threshold(probs: np.ndarray) -> float:
sorted_probs: np.ndarray = probs[probs.argsort()[::-1]]
difs: np.ndarray = sorted_probs[:-1] - sorted_probs[1:]
t: signedinteger[Any] = difs.argmax()
thresh: float = (sorted_probs[t] + sorted_probs[t + 1]) / 2
return thresh
def print_traceback() -> None:
tb: traceback.StackSummary = traceback.extract_tb(sys.exc_info()[2])
trace: List[str] = traceback.format_list(tb)
print('---- traceback ----')
for line in trace:
if '~^~' in line:
print(line.rstrip())
else:
text: str = re.sub(r'\n\s*', ' ', line.rstrip())
print(text)
print('-------------------')
class Predictor:
def __init__(self) -> None:
self.last_loaded_repo: Optional[str] = None
self.tagger_model: Optional[nn.Module] = None
self.tag_names: Optional[List[str]] = None
self.rating_index: Optional[List[int]] = None
self.general_index: Optional[List[int]] = None
self.character_index: Optional[List[int]] = None
self.transform: Optional[Callable] = None
def list_files_recursive(self, dir_path: str) -> List[str]:
file_list: List[str] = []
for root, _, files in os.walk(dir_path):
for file in files:
file_path: str = os.path.join(root, file)
if any(file_path.endswith(ext) for ext in EXTENSIONS):
file_list.append(file_path)
return file_list
def prepare_image(self, image: Image.Image) -> Image.Image:
#target_size: int = self.model_target_size
if image.mode in ('RGBA', 'LA'):
background: Image.Image = Image.new("RGB", image.size, (255, 255, 255))
background.paste(image, mask=image.split()[-1])
image = background
else:
# copy image to avoid error at convert method call
image = image.copy()
image = image.convert("RGB")
image_shape: Tuple[int, int] = image.size
max_dim: int = max(image_shape)
pad_left: int = (max_dim - image_shape[0]) // 2
pad_top: int = (max_dim - image_shape[1]) // 2
padded_image: Image.Image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
padded_image.paste(image, (pad_left, pad_top))
return padded_image
def load_labels_hf(
self,
repo_id: str,
revision: Optional[str] = None,
token: Optional[str] = None,
) -> None:
try:
csv_path = hf_hub_download(
repo_id=repo_id, filename="selected_tags.csv", revision=revision, token=token
)
csv_path = Path(csv_path).resolve()
except HfHubHTTPError as e:
raise FileNotFoundError(f"selected_tags.csv failed to download from {repo_id}") from e
df: pd.DataFrame = pd.read_csv(csv_path, usecols=["name", "category"])
self.rating_index = list(np.where(df["category"] == 9)[0])
self.general_index = list(np.where(df["category"] == 0)[0])
self.character_index = list(np.where(df["category"] == 4)[0])
self.tag_names = df["name"].tolist()
def load_model(self) -> None:
if self.tagger_model is not None:
return
self.tagger_model = timm.create_model("hf-hub:" + TAGGER_VIT_MODEL_REPO).eval()
state_dict = timm.models.load_state_dict_from_hf(TAGGER_VIT_MODEL_REPO)
self.tagger_model.load_state_dict(state_dict)
print("Loading tag list...")
self.load_labels_hf(repo_id=TAGGER_VIT_MODEL_REPO)
print("Creating data transform...")
self.transform = create_transform(**resolve_data_config(self.tagger_model.pretrained_cfg, model=self.tagger_model))
def predict(
self,
tensors: List[Tensor],
general_thresh: float,
general_mcut_enabled: bool,
character_thresh: float,
character_mcut_enabled: bool,
) -> List[str]:
batched_tensor = torch.stack(tensors, dim=0)
print("Running inference...")
with torch.inference_mode():
# move model to GPU, if available
model = self.tagger_model
if torch_device.type != "cpu":
model = self.tagger_model.to(torch_device)
batched_tensor = batched_tensor.to(torch_device)
# run the model
outputs = model.forward(batched_tensor)
# apply the final activation function (timm doesn't support doing this internally)
outputs = F.sigmoid(outputs)
# move inputs, outputs, and model back to to cpu if we were on GPU
if torch_device.type != "cpu":
outputs = outputs.to("cpu")
print("Processing results...")
preds = outputs.numpy()
ret_strings: List[str] = []
for idx in range(0, len(tensors)):
labels: List[Tuple[str, float]] = list(zip(self.tag_names, preds[idx].astype(float)))
general_names: List[Tuple[str, float]] = [labels[i] for i in self.general_index]
if general_mcut_enabled:
general_probs: np.ndarray = np.array([x[1] for x in general_names])
general_thresh = mcut_threshold(general_probs)
general_res: Dict[str, float] = {x[0]: x[1] for x in general_names if x[1] > general_thresh}
character_names: List[Tuple[str, float]] = [labels[i] for i in self.character_index]
if character_mcut_enabled:
character_probs: np.ndarray = np.array([x[1] for x in character_names])
character_thresh = mcut_threshold(character_probs)
character_thresh = max(0.15, character_thresh)
character_res: Dict[str, float] = {x[0]: x[1] for x in character_names if x[1] > character_thresh}
sorted_general_strings: List[Tuple[str, float]] = sorted(
general_res.items(),
key=lambda x: x[1],
reverse=True,
)
sorted_general_strings_str: List[str] = [x[0] for x in sorted_general_strings]
sorted_general_strings_str = [x.replace(' ', '_') for x in sorted_general_strings_str]
ret_string: str = (
",".join(sorted_general_strings_str)
)
if len(character_res) > 0:
sorted_character_strings: List[Tuple[str, float]] = sorted(
character_res.items(),
key=lambda x: x[1],
reverse=True,
)
sorted_character_strings_str: List[str] = [x[0] for x in sorted_character_strings]
sorted_character_strings_str = [x.replace(' ', '_') for x in sorted_character_strings_str]
ret_string += ","
ret_string += ",".join(sorted_character_strings_str)
ret_strings.append(ret_string)
return ret_strings
def write_to_file(self, csv_line: str) -> None:
self.f.write(csv_line + '\n')
def gen_image_tensor(self, file_path: str) -> Tensor | None:
img: Image.Image = None
try:
img = Image.open(file_path)
img.load()
img_tmp = self.prepare_image(img)
# run the model's input transform to convert to tensor and rescale
input: Tensor = self.transform(img_tmp)
# NCHW image RGB to BGR
input = input[[2, 1, 0]]
return input
except Exception as e:
if img is not None:
img.close()
error_class: type = type(e)
error_description: str = str(e)
err_msg: str = '%s: %s' % (error_class, error_description)
print(err_msg)
return None
# def load_tensor_th(self, file_path: str) -> Tensor | None:
# try:
# loaded_tensor = torch.load(file_path)
# return loaded_tensor
# except Exception as e:
# error_class: type = type(e)
# error_description: str = str(e)
# err_msg: str = '%s: %s' % (error_class, error_description)
# print(err_msg)
# print_traceback()
# return None
def filter_files_by_date(self, file_list: List[str], added_date: datetime.date) -> List[str]:
filtered_list: List[str] = []
for file_path in file_list:
stat = os.stat(file_path)
ctime: datetime.date = datetime.date.fromtimestamp(stat.st_ctime)
if ctime >= added_date:
filtered_list.append(file_path)
return filtered_list
def process_directory(self, dir_path: str, added_date: datetime.date | None = None) -> None:
file_list: List[str] = self.list_files_recursive(dir_path)
print(f'{len(file_list)} files found')
# tag new images after specified date
if added_date is not None:
file_list = self.filter_files_by_date(file_list, added_date)
print(f'{len(file_list)} files found after {added_date}')
# backup tags-wd-tagger.txt with copying to tags-wd-tagger.txt.bak
if os.path.exists('tags-wd-tagger.txt'):
with open('tags-wd-tagger.txt', 'r', encoding='utf-8') as f:
with open('tags-wd-tagger.txt.bak', 'w', encoding='utf-8') as f_bak:
f_bak.write(f.read())
else:
print('tags-wd-tagger.txt not found')
exit(1)
self.f = open('tags-wd-tagger.txt', 'a', encoding='utf-8')
self.load_model()
tensors: List[Tensor] = []
fpathes: List[str] = []
start: float = time.perf_counter()
last_cnt: int = 0
cnt: int = 0
failed_cnt: int = 0
passed_idx: int = 0
with concurrent.futures.ThreadPoolExecutor(max_workers=WORKER_NUM) as executor:
# dispatch get Tensor task to processes
future_to_path = {executor.submit(self.gen_image_tensor, file_path): file_path for file_path in
file_list[0: BATCH_SIZE]}
passed_idx += BATCH_SIZE
while passed_idx < len(file_list):
for future in concurrent.futures.as_completed(future_to_path):
path = future_to_path[future]
try:
tensor = future.result()
if tensor is None:
failed_cnt += 1
cnt -= 1
# continue
if tensor is not None:
tensors.append(tensor)
fpathes.append(path)
if len(tensors) >= BATCH_SIZE - failed_cnt:
# submit load Tensor tasks for next batch
end_idx = passed_idx + BATCH_SIZE
if end_idx > len(file_list):
end_idx = len(file_list)
future_to_path = {executor.submit(self.gen_image_tensor, file_path): file_path for file_path
in file_list[passed_idx: end_idx]}
passed_idx = end_idx
# run inference
results_in_csv_format: List[str] = self.predict(tensors, 0.3, True, 0.3, True)
for idx, line in enumerate(results_in_csv_format):
self.write_to_file(fpathes[idx] + ',' + line)
tensors = []
fpathes = []
failed_cnt = 0
cnt += 1
if cnt - last_cnt >= PROGRESS_INTERVAL:
now: float = time.perf_counter()
print(f'{cnt} files processed')
diff: float = now - start
print('{:.2f} seconds elapsed'.format(diff))
if cnt > 0:
time_per_file: float = diff / cnt
print('{:.4f} seconds per file'.format(time_per_file))
print("", flush=True)
last_cnt = cnt
except Exception as e:
error_class: type = type(e)
error_description: str = str(e)
err_msg: str = '%s: %s' % (error_class, error_description)
print(err_msg)
print_traceback()
continue
def main(arg_str: list[str]) -> None:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument('--dir', nargs=1, required=True, help='tagging target directory path')
# Note: when specified --after, create tags-wd-tagger.txt.bak file and update tags-wd-tagger.txt
parser.add_argument('--after', nargs=1,
help='tagging new images after this date (mtime attribute). Format: YYYY-MM-DD')
args: argparse.Namespace = parser.parse_args(arg_str)
predictor: Predictor = Predictor()
if args.after is not None:
try:
after_date: datetime.date = datetime.datetime.strptime(args.after[0], '%Y-%m-%d').date()
except Exception as e:
error_class: type = type(e)
error_description: str = str(e)
err_msg: str = '%s: %s' % (error_class, error_description)
print(err_msg)
print('Invalid date format. format is YYYY-MM-DD')
exit(1)
predictor.process_directory(args.dir[0], after_date)
else:
predictor.process_directory(args.dir[0])
if __name__ == "__main__":
main(sys.argv[1:])