-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathdqn_fx_trade_tensorflow_testing_with_cartpole.py
225 lines (187 loc) · 9.6 KB
/
dqn_fx_trade_tensorflow_testing_with_cartpole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# coding:utf-8
# [0]必要なライブラリのインポート
# this code based on code on https://qiita.com/sugulu/items/bc7c70e6658f204f85f9
# I am very grateful to work of Mr. Yutaro Ogawa (id: sugulu)
# import gym # 倒立振子(cartpole)の実行環境
# import numpy as np
# import time
# from keras.models import Sequential, model_from_json, Model
# from keras.layers import Dense, BatchNormalization, Dropout
# from keras.optimizers import Adam
# from keras.utils import plot_model
# from collections import deque
# from keras import backend as K
# import tensorflow as tf
# import pickle
# #from agent_fx_environment import FXEnvironment
# import os
# import sys
# import math
import gym # 倒立振子(cartpole)の実行環境
import numpy as np
import time
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras.utils import plot_model
from collections import deque
from gym import wrappers # gymの画像保存
from keras import backend as K
import tensorflow as tf
# [1]損失関数の定義
# 損失関数にhuber関数を使用 参考https://github.com/jaara/AI-blog/blob/master/CartPole-DQN.py
def huberloss(y_true, y_pred):
err = y_true - y_pred
cond = K.abs(err) < 1.0
L2 = 0.5 * K.square(err)
L1 = (K.abs(err) - 0.5)
loss = tf.where(cond, L2, L1) # Keras does not cover where function in tensorflow :-(
return K.mean(loss)
# [2]Q関数をディープラーニングのネットワークをクラスとして定義
class QNetwork:
def __init__(self, learning_rate=0.001, state_size=15, action_size=3, hidden_size=10):
self.model = Sequential()
self.model.add(Dense(hidden_size, activation='relu', input_dim=state_size))
self.model.add(Dense(hidden_size, activation='relu'))
# self.model.add(BatchNormalization())
# self.model.add(Dropout(0.5))
# self.model.add(Dense(hidden_size, activation='relu'))
self.model.add(Dense(action_size, activation='linear'))
self.optimizer = Adam(lr=learning_rate) # 誤差を減らす学習方法はAdam
self.model.compile(loss=huberloss,
optimizer=self.optimizer)
# 重みの学習
def replay(self, memory, batch_size, gamma, targetQN):
inputs = np.zeros((batch_size, feature_num))
targets = np.zeros((batch_size, 2))
mini_batch = memory.sample(batch_size)
for i, (state_b, action_b, reward_b, next_state_b) in enumerate(mini_batch):
inputs[i:i+1] = state_b
target = reward_b
if not (next_state_b == np.zeros(state_b.shape)).all(axis=1):
# 価値計算(DDQNにも対応できるように、行動決定のQネットワークと価値観数のQネットワークは分離)
retmainQs = self.model.predict(next_state_b)[0]
next_action = np.argmax(retmainQs) # 最大の報酬を返す行動を選択する
target = reward_b + gamma * targetQN.model.predict(next_state_b)[0][next_action]
retmainQs = self.model.predict(next_state_b)[0]
next_action = np.argmax(retmainQs) # 最大の報酬を返す行動を選択する
target = reward_b + gamma * targetQN.model.predict(next_state_b)[0][next_action]
#print(self.model.predict(state_b))
#print(self.model.predict(state_b)[0])
targets[i] = self.model.predict(state_b) # Qネットワークの出力
targets[i][action_b] = target # 教師信号
self.model.fit(inputs, targets, epochs=1, verbose=0) # epochsは訓練データの反復回数、verbose=0は表示なしの設定
# def save_model(self, file_path_prefix_str):
# with open("./" + file_path_prefix_str + "_nw.json", "w") as f:
# f.write(self.model.to_json())
# self.model.save_weights("./" + file_path_prefix_str + "_weights.hd5")
#
# def load_model(self, file_path_prefix_str):
# with open("./" + file_path_prefix_str + "_nw.json", "r") as f:
# self.model = model_from_json(f.read())
# self.model.compile(loss=huberloss, optimizer=self.optimizer)
# self.model.load_weights("./" + file_path_prefix_str + "_weights.hd5")
# [3]Experience ReplayとFixed Target Q-Networkを実現するメモリクラス
class Memory:
def __init__(self, max_size=1000):
self.buffer = deque(maxlen=max_size)
def add(self, experience):
self.buffer.append(experience)
def sample(self, batch_size):
idx = np.random.choice(np.arange(len(self.buffer)), size=batch_size, replace=False)
return [self.buffer[ii] for ii in idx]
def get_last(self, num):
deque_length = len(self.buffer)
start = deque_length - num
end = deque_length
return [self.buffer[ii] for ii in range(start, end)]
def len(self):
return len(self.buffer)
# def save_memory(self, file_path_prefix_str):
# with open("./" + file_path_prefix_str + ".pickle", 'wb') as f:
# pickle.dump(self.buffer, f)
#
# def load_memory(self, file_path_prefix_str):
# with open("./" + file_path_prefix_str + ".pickle", 'rb') as f:
# self.buffer = pickle.load(f)
# [4]カートの状態に応じて、行動を決定するクラス
class Actor:
def get_action(self, state, episode, mainQN, isBacktest = False): # [C]t+1での行動を返す
# 徐々に最適行動のみをとる、ε-greedy法
#epsilon = 0.001 + 0.9 / (1.0+(300.0*(episode/iteration_num)))
epsilon = 0.001 + 0.9 / (1.0 + episode)
if epsilon <= np.random.uniform(0, 1) or isBacktest == True:
retTargetQs = mainQN.model.predict(state)[0]
#print(retTargetQs)
action = np.argmax(retTargetQs) # 最大の報酬を返す行動を選択する
else:
action = np.random.choice([0, 1]) # ランダムに行動する
return action
# [5] メイン関数開始----------------------------------------------------
# [5.1] 初期設定--------------------------------------------------------
TRAIN_DATA_NUM = 223954 # 3years (test is 5 years)
# ---
gamma = 0.99 # 割引係数
hidden_size = 16 #50 # Q-networkの隠れ層のニューロンの数
learning_rate = 0.0001 #0.005 #0.01 # 0.05 #0.001 #0.0001 # 0.00001 # Q-networkの学習係数
memory_size = 10000 #TRAIN_DATA_NUM * 2 #10000 # バッファーメモリの大きさ
batch_size = 32 #64 # 32 # Q-networkを更新するバッチの大きさ
num_episodes = 300
iteration_num = 1000
feature_num = 4 #11
nn_output_size = 2
#num_consecutive_iterations = 10 # 学習完了評価の平均計算を行う試行回数
env = gym.make('CartPole-v0')
#def train_agent():
# [5.2]Qネットワークとメモリ、Actorの生成--------------------------------------------------------
mainQN = QNetwork(hidden_size=hidden_size, learning_rate=learning_rate, state_size=feature_num, action_size=nn_output_size) # メインのQネットワーク
targetQN = QNetwork(hidden_size=hidden_size, learning_rate=learning_rate, state_size=feature_num,
action_size=nn_output_size) # 状態の価値を求めるためのネットワーク
memory = Memory(max_size=memory_size)
# memory_hash = {}
actor = Actor()
total_get_acton_cnt = 0
# inputs = np.zeros((batch_size, feature_num))
# targets = np.zeros((batch_size, nn_output_size))
for cur_itr in range(iteration_num):
env.reset()
state, reward, done, _ = env.step(env.action_space.sample()) # 1step目は適当な行動をとる
state = np.reshape(state, [1, feature_num]) # list型のstateを、1行15列の行列に変換
episode_reward = 0
targetQN.model.set_weights(mainQN.model.get_weights())
for episode in range(num_episodes): # 試行数分繰り返す
total_get_acton_cnt += 1
action = actor.get_action(state, cur_itr, mainQN) # 時刻tでの行動を決定する
next_state, reward, done, info = env.step(action) # 行動a_tの実行による、s_{t+1}, _R{t}を計算する
next_state = np.reshape(state, [1, feature_num]) # list型のstateを、1行11列の行列に変換
# 報酬を設定し、与える
if done:
next_state = np.zeros(state.shape) # 次の状態s_{t+1}はない
if episode < 195:
reward = -1 # 報酬クリッピング、報酬は1, 0, -1に固定
else:
reward = 1 # 立ったまま195step超えて終了時は報酬
else:
reward = 0 # 各ステップで立ってたら報酬追加(はじめからrewardに1が入っているが、明示的に表す)
a_log = (state, action, reward, next_state)
memory.add(a_log) # メモリを更新する
# # 後からrewardを更新するためにエピソード識別子をキーにエピソードを取得可能としておく
# memory_hash[info[0]] = a_log
episode_reward += 1
state = next_state # 状態更新
# Qネットワークの重みを学習・更新する replay
if (memory.len() > batch_size):
mainQN.replay(memory, batch_size, gamma, targetQN)
# 1施行終了時の処理
if done:
#total_reward_vec = np.hstack((total_reward_vec[1:], episode_reward)) # 報酬を記録
print('iteration %d: episode_reward %d' % (
cur_itr, episode_reward))
break
# if __name__ == '__main__':
# train_agent()
# # np.random.seed(1337) # for reproducibility
# if sys.argv[1] == "train":
# tarin_agent()
# else:
# print("please pass argument 'train' or 'backtest'")