Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Export menus #5

Open
ryouchinsa opened this issue Mar 14, 2024 · 0 comments
Open

Export menus #5

ryouchinsa opened this issue Mar 14, 2024 · 0 comments

Comments

@ryouchinsa
Copy link
Owner

Export Create ML JSON file

Annotation files are exported as an Create ML JSON file.
Put training images and the JSON file into the same folder.
Do not put any other files in the folder and be sure that image file names do not contain spaces.

[{
    "image": "sneakers-1.jpg",
    "annotations": [
    {
        "label": "sneakers",
        "coordinates":
        {
            "y": 838,
            "x": 393,
            "width": 62,
            "height": 118
        }
    },
    {
        "label": "sneakers",
        "coordinates":
        {
            "y": 881,
            "x": 392,
            "width": 51,
            "height": 102
        }
    }]
}]

Import Create ML JSON file

The Create ML JSON file is imported to annotation files in the current folder.
Before importing, be sure that you opened images folder and annotations folder.
RectLabel can import from "imagefilename" and "annotation" keys, too.

Export COCO JSON file

Specify the split ratio "80/10/10" so that all images are split into train, validation, and test sets.
When the shuffle checkbox is ON, images are randomly shuffled everytime you export. When the shuffle checkbox is OFF, images are taken from the current sort according to the split ratio.
Annotation files are exported as an COCO JSON file.
Detectron2 is Facebook AI Research's next generation library that provides state-of-the-art detection and segmentation algorithms.
For a box object, "segmentation" is exported as empty.

"annotations": [
{
    "area": 254521,
    "bbox": [2150, 419, 595, 428],
    "category_id": 14,
    "id": 1,
    "image_id": 1,
    "iscrowd": 0,
    "segmentation": []
},

For a rotated box, polygon, line, and point object, "segmentation" is exported as polygons.

"annotations": [
{
    "area": 164608,
    "bbox": [132, 417, 594, 432],
    "category_id": 14,
    "id": 1,
    "image_id": 1,
    "iscrowd": 0,
    "segmentation": [
        [136, 557, 152, 532, 191, 509, 266, 482, 367, 456, 375, 428, 427, 417, 486, 443, 516, 481, 518, 499, 564, 522, 611, 518, 661, 536, 701, 557, 724, 574, 719, 597, 691, 645, 723, 654, 715, 678, 695, 719, 681, 759, 681, 791, 670, 801, 659, 789, 656, 765, 627, 756, 644, 778, 629, 832, 591, 842, 553, 834, 514, 809, 494, 781, 491, 767, 433, 769, 403, 761, 405, 794, 387, 823, 369, 840, 344, 847, 309, 837, 295, 810, 286, 776, 290, 755, 297, 741, 259, 723, 216, 693, 179, 658, 147, 629, 132, 601, 132, 577]
    ]
},

For a pixels object, "segmentation" is exported as RLE.
RLE is encoding the mask image using the COCO Mask API.

"annotations": [
{
    "area": 1022954,
    "bbox": [212, 0, 4204, 2960],
    "category_id": 26,
    "id": 1,
    "image_id": 1,
    "iscrowd": 0,
    "segmentation":
    {
        "counts": "ie_e03cW3O100O1000_knT30QmmjL2MOUW3?K3I]OViLg0iV35D`0FdNoiL]1lU39RjLZNfU3n1M2O2LSOejLGXU3;hjLkNMf0YU3?QkL_OoT3a0VkL[OiT3f0ZkLhNA9UU3o0`kLjNYO1WU3V1Q110O01O001O1O1N2O1L3O2O001O100M120N2N1O2O1O1O1O1O010O1O1O001O001O00100N101O1O1O0O2O001N10001O1O1N20000O1O1O1O00100O1O00101N1000O101O001OO10000O10O010O02N1M201L5L2K6L4N2N2O010O1O1O1O1O100O1O10O01O2OO0101N0010000O10000O1O1O011O000O1O100O1O1O010O100O0010000O1O100O10O01N200O2OO01O2N10O01N3M2O1O1O10O01O1O1O010O101N0O20O100000N1100O1OO200O01O10gaMQKki1o4VVNQKhi1Q5YVNnJgi1R5XVNPKgi1o4ZVNQKei1o4\\VNQKbi1Q5^VNoJbi1Q5^VNPK`i1Q5`VNoJ`i1P5bVNoJ]i1Q5dVNQKYi1P5gVNPKWi1S5hVNmJXi1S5hVNmJVi1T5kVNlJUi1T5kVNlJSi1V5mVNjJRi1X5mVNgJSi1Z5mVNfJQi1\\5nVNeJPi1]5PWNcJPi1]5oVNdJQi1]5nVNcJRi1^5mVNbJPi1a5PWN_JQi1`5nVN`Joh1e5oVN\\JQi1d5oVN\\JPi1e5oVN\\JQi1e5nVN[JQi1f5oVNYJPi1i5oVNXJPi1j5nVNWJQi1k5nVNUJQi1n5mVNQJSi1P6lVNQJRi1T6kVNkIUi1W6iVNjIVi1Y6gVNhIXi1[6eVNfIYi1^6eVNbIZi1_6eVNbIYi1b6eVN\\I\\i1g6aVNZI]i1h6bVNYI]i1h6bVNYI\\i1j6cVNTI]i1o6aVNRI^i1o6aVNPIj\\OFd\\2[7bVNoH^i1S7aVNnH]i1T7cVNlH\\i1U7cVNjH^i1W7aVNjH_i1V7`VNkH_i1V7`VNkH_i1V7`VNiH`i1Y7_VNhH`i1V7bVNkH]i1V7cVNjH\\i1V7dVNjH\\i1W7dVNhH[i1Z7dVNfH]i1Z7cVNeH\\i1\\7dVNdH\\i1\\7dVNeH[i1\\7dVNdH\\i1\\7eVNdHZi1]7eVNbH[i1`7eVN`HYi1b7fVN^H[i1a7eVN`HYi1b7fVN^HYi1d7gVN\\HWi1e7iVNZHWi1h7hVNYHVi1h7jVNWHXi1i7hVNWHUi1k7kVNVHSi1l7lVNTHTi1m7lVNRHSi1o7mVNQHRi1Q8mVNoGSi1R8lVNoGQi1S8oVNmGQi1T8oVNkGPi1V8oVNkGPi1W8oVNiGQi1X8nVNhGQi1Z8oVNfGoh1\\8oVNdGQi1^8oVNaGnh1b8QWN`Gnh1a8QWN^Gmh1f8RWN[Glh1g8SWNXGlh1k8SWNVGlh1j8TWNWGih1l8mmMnFI5\\R2m8kmMnFH5ZR2Q9hmMRGKM\\R2S9imMPGJM]R2T9emMSGMH]R2X9fmMPGLImP2M_gM[9d7QG1GiP23^gMW9g7PG0FmP25WgMW9l7mF1GjP2:_fMYOe0i9Q8mFOHlP2>QgMP9o7lF4GlP2`0ofMl8R8mF2GmP2d0hfMl8U8kF7DmP2i0_fMl8^8gF6DlP2Q;lnM]E6BoP2R;knMZE7EnP2Q;dnM`E=_OPQ2R;anM`E?]OQQ2S;^nMaEa0^OPQ2Q;\\nMdEd0[OPQ2R;YnMeEd0\\OTQ2n:VnMgEg0ZOTQ2P;QnMhEk0YOUQ2o:jmMmER1SOTQ2P;hmMoEQ1SOYQ2n:dmMQFQ1SO[Q2l:_mMTFT1RO^Q2k:\\mMUFU1QO_Q2i:YmMYFT1QOeQ2f:SmM]FV1oNgQ2d:nlMaFT1QOPR2^:glMfFW1nNRR2[:clMlFU1nNXR2W:\\lMQG[1iNZR2V:nkM^Gd1_N^R2T:hkMbGh1]N`R2Q:bjM]DaKW4Z7[MfR2P:XjMPIR3QMeR2P:RjMUIV3lLkR2P:kiMVIZ3jLkR2Q:fiMZI]3fLnR2P:biM]I^3dLPS2Q:ZiMbIc3`LSS2o9XiMbId3^LVS2P:SiMeIkNfJa2e1aU2R:PiMdIoNgJ\\2d1fU2Q:lhMgIROmJYN=e0YO=g1gX2P:ihMhIUOZLkMWN5K2b0U1[1kX2P:dhMkI[OaMROeNPY2o9ahMmI]O`MoNeNTY2o9\\hMPJ_O^MnNdNWY2P:ZhMoIA]MkNgNZY2o9VhMoID\\MjNgN]Y2n9ShMQJE\\MjNdN_Y2P:ogMRJG\\MfNfNcY2n9ngMQJI[MfNeNdY2Q:igMRJK]M`NcNmY2o9fgMSJJ]M`NdNoY2o9cgMTJL3aX2j5`gMVJM0dX2n5XgMVJ3KfX2o5hfMfJ>^OiX2Q6jeM^K[1`NlX2]>SgMdAmX2\\>RgMdAnX2^>PgMcAPY2\\>PgMeAPY2\\>ofMcARY2a>ifM_AWY2h>bfMYA^Y2k>]fMUAdY2k>ZfMWAfY2i>XfMXAiY2j>TfMWAlY2k>QfMVAoY2l>neMUARZ2P?geMRAYZ2o>aeMUA_Z2Pf0100000O100000O0100O0100000O0100O10O0100O100O01000O01000O10O00100000N2000000O1O0100O010000O10O10O1O1000O10000O10O1O0100000000O10000000000O100000WO\\eMaTOdZ2_k0\\eMaTOdZ2Xl000O100O02O00O100000000O2O000O10000O10000O100000000O0100O10O100000O0010000O0010OO11000O1O10OO20O10O1O10O0100O010O0010O10N1100O10N1100O00001OO11N2N2OO02O001O001O0O2N101O1N2N11OO20ON300N2O10O01N2O1O10O01O001000000O1O10N11O100O10O1O01O100O011NO11O1O1OO1100O1O100O100O1O10000O100O1O100O1O2O0N3OOO3N1M300N200J6N2N2M3cNXQOjiMkn0UV2ZQOeiMhn0ZV2\\QO^iMin0`V2\\QO\\iMen0dV2X1M1O100O100O10002M100O102M2O3L3N:F000O01O10000N1100OO200L310N110L40ON3O1N1O2K4O2N2N101N1N3O0N3O0O2O1N1O2N200M210N200M3OO0200N102L3O0N300N110M3O1N200N20OO200N101O1O1M300N200N1100000N200N200N200N20OO200N200N20OO20001OOO200N200N1011O00N200N200N2000000N200N200N3O0N200N201K400N200N200L401M2N1O201K4O1O2M2N200N200L400N200L400L400L40NN40L040NN4OO1100N2O2N2M2O102N002N0M5M102N000N2O3M1O10002N002L3N2N10001N3M2N2N2O1O1O1O1K4O2O1O1O1L4O0O2O1N100N3O1M201M220L201M201O1M2N3O001O1M202L202N002L202N002L202N002L201O1O00002N0000002N002L211NO11O010O1N1001O00010O01O002OO011M12OO001O02OO1O001000O000100O010O1O0011OO011N01O011OO003NO10O020N10OO21N04NN000022L01O1O1O22MO2N0020N03N0O11O00O1O12N00O1O20OO20OO4NN05MN14OL04NN130MO31MN31NO20NO04L1O5K1O3M2N2N3L4M1O3M3L5L2N4L2N4L2M4M1O3L2O1O1N3N1O1N2N3N1OO02NoVOhbMig0X]2TXOlbMkg0R]2VXOobMjg0P]2UXORcMkg0k\\2WXOVcMig0h\\2WXOZcMig0e\\2VXO^cMig0a\\2WXO`cMig0^\\2WXOdcMig0[\\2WXOfcMig0Y\\2UXOjcMkg0U\\2VXOlcMig0R\\2WXOPdMig0o[2WXORdMig0l[2WXOVdMig0i[2WXOYdMhg0f[2WXO\\dMkg0a[2UXO`dMkg0^[2UXOddMkg0[[2TXOgdMlg0W[2TXOkdMlg0T[2UXOmdMjg0Q[2UXOReMkg0mZ2UXOTeMkg0jZ2UXOWeMng0fZ2RXO[eMng0cZ2QXO`eMog0_Z2QXObeMog0\\Z2PXOgeMRh0UZ2PXOkeMPh0SZ2RXOmeMng0RZ2SXOneMmg0QZ2RXOQfMPh0lY2QXOTfMog0jY2QXOXfMog0gY2RXOYfMng0dY2SXO\\fMQh0aY2oWO`fMQh0^Y2nWOefMRh0YY2oWOhfMQh0VY2PXOlfMQh0PY2oWORgMQh0mX2nWOUgMRh0iX2oWOXgMQh0gX2mWO\\gMSh0cX2nWO\\gMSh0aX2nWOagMTh0\\X2lWOegMTh0XX2lWOlgMUh0QX2kWOPhMUh0oW2kWOQhMVh0nW2iWOThMWh0jW2jWOWhMXh0fW2hWO[hMXh0cW2hWO_hMZh0^W2eWOdhM[h0ZW2eWOhhM[h0WW2eWOjhM[h0RW2fWOPiM]h0nV2cWORiM]h0lV2bWOWiM^h0gV2cWOYiM_h0dV2aWO^iM`h0aV2_WO`iMah0^V2^WOeiMdh0WV2]WOjiMch0TV2^WOmiMbh0RV2]WOPjMch0mU2^WOUjMdh0hU2\\WOYjMdh0eU2[WO]jMhh0`U2XWOajMhh0^U2XWOcjMjh0ZU2UWOgjMlh0VU2UWOljMlh0RU2SWOPkMmh0nT2TWOSkMmh0kT2RWOWkMoh0gT2PWOZkMQi0dT2PWO]kMRi0_T2nVOckMRi0\\T2oVOckMSi0YT2mVOjkMTi0UT2kVOlkMVi0QT2fVOQhMoNQ4]j0kS2eVOXlM\\i0fS2cVO\\lM^i0aS2cVO`lM^i0]S2aVOflM`i0XS2aVOhlMai0TS2]VOPmMdi0nR2]VORmMdi0kR2\\VOWmMfi0fR2[VOZmMei0dR2YVO`mMii0]R2XVOcmMhi0[R2YVOgmMgi0WR2ZVOimMgi0SR2ZVOomMgi0PR2XVOQnMii0lQ2YVOTnMhi0iQ2YVOYnMfi0eQ2YVO^nMhi0`Q2XVOanMii0\\Q2VVOgnMki0WQ2UVOjnMli0SQ2TVOonMoi0lP2RVOUoMni0jP2PVOZoMQj0cP2oUO^oMQj0`P2oUOboMRj0\\P2oUOdoMRj0e1nTOZg1Q1SWNRj0a1oTOZg1n0WWNTj0]1PUOZg1k0\\WNTj0Y1QUOZg1m0]WNSj0W1QUOZg1l0aWNTj0S1QUOZg1l0dWNTj0P1QUOZg1k0hWNUj0m0PUOZg1k0jWNUj0k0QUOXg1j0PXNWj0e0oTO[g1j0QXNXj0b0oTO\\g1h0UXNXj0=QUO]g1g0WXNYj0;QUO\\g1g0[XNXj07QUO]g1i0\\XNVj06RUO\\g1g0aXNXj01QUO^g1f0cXNZj0MPUO_g1g0eXNYj0JQUOag1e0gXNZj0GRUO`g1e0kXNYj0BSUObg1d0nXNXj0@TUOag1d0QYNYj0ZOVUOdg1`0TYNZj0VOWUOeg1?WYN[j0ROUUOhg1?XYN[j0nNXUOhg1?[YNZj0jNXUOjg1?]YNYj0hNXUOjg1?aYNXj0cN[UOkg1nQ2RCm[NU5QCP8PQ2lBT\\Nn4oBR8lP2QCX\\Ni4UCo7dP2WCY\\Ni4UCo7_P2XC_\\Ng4TCQ8[P2XCf\\Nc4SCPJ`Nh=hQ2fCi\\N_4RCk7XP2dCi\\N`4QCk7QP2fCR]N_4PCh7mo1iCT]N]4QCf7ko1oCX]NY4PC]7PP2YDQ]NY4PC^7jo1\\DX]NU4TCY7do1bDY]NU4SCY7`o1aDd]NR4SCe6lo1VET]NU4PCc6jo1YEY]NS4nBc6ho1\\EZ]NQ4nBc6fo1ZEb]NP4iBW6QP2kEW]Nn3hBU6QP2lE\\]Nm3cBW6no1mEa]Nl3aBW6lo1lEh]Ni3fBe5no1aFZmM_NS`0[5eBe5ko1bFf]Nf3`Be5lo1dFe]Nh3_Bd5ho1fFn]Nc3ZBg5fo1eFS^Nd3`BS5fo1YGn]Nb3\\Bn4lo1^Gk]Nd3YBn4ho1`GU^N^3SBR5go1^GY^N]3hBQ4Zo1dHR^NY3dBm3_o1hHP^N[3aBm3\\o1iHY^NV3[BQ4Yo1jH^^NU3XCf2en1TJ[^Nn2RCc2ln1^JS^NQ3QC`2jn1`J[^Nl2kBb2kn1`J]^Nn2YCc1dn1`KZ^Ni2RC[1on1mKo]Nh2RC[1ln1lKZ^Nd2kB`1jn1iK_^Nf2hBa1fn1jKe^Nd2VCj0[n1aLa^Ne2TCg0[n1eLc^Ne2QCd0fk1ZKoPN^1[`0d2PCb0fk1_KkPN\\1f`0^2VC6\\k1QLgPNZ1i`0\\2WC9Xk1RLdPN[1Qa0X2SC5^k1XL\\PNZ1Va0Y2PC3^k1]LXPNX1`a0U2RCHZk1lLRPNW1da0U2PCGZk1nLooMX1ja0o1oBF\\k1TMhoMX1oa0o1lBC^k1WMfoMV1Rb0P2jBC\\k1YMdoMU1Yb0m1P\\O_LT7c2Uk1lMomMFm0a1lb0j1VCQOSk1oMlmMHk0_1Rc0i1TCQORk1PNkmMIl0\\1Uc0k1QCPOSk1PNjmMKh0\\1bc0c1mBnNRk1kN]nMd0gc0`1kBPOQk1nN\\nMa0ic0`1kBQOoj1oNYnM`0Qd0`1gBQOnj1QOWnM`0Vd0\\1nBhNfj1]OTnM>]d0[1iBjNej1^OSnM>`d0Z1hBjNdj1@nmM?id0T1gBkNdj1CjmM?kd0S1gBkNcj1GgmM9Ue0R1aBnN_j1h1QcNZO`BmN_j1h1TcNXO_BoNZj1l1XcNVO]BnN[j1h1acNTObBfNmi1W2acNSObBfNhi1Z2kcNmN]BhNfi1]2ncNkN\\BhNei1\\2VdNgN]BeN\\i1e2WdNfN]BdN[i1g2]dNaNXBhNZi1h2^dN`NXBhNYi1h2`dN_NXBiNWi1g2gdNXLcYOR2g8gNnh1o2mdNXNUBjNlh1n2PeNXNTBjNkh1m2TeNXNRBjNjh1n2WeNUNSBkNch1n2^eNVNSBhN^h1Q3aeNWNQBhN]h1P3deNXNoAhN\\h1P3ieNUNmAiNYh1Q3meNUNoAdNUh1V3meNVNoAcNSh1V3PfNWNdc1h1]\\NXNcc1f1d\\NUN[c1k1f\\NUNZc1j1g\\NVNYc1h1i\\NXNWc1f1Q]NTNob1k1R]NUNnb1i1V]NUNib1k1X]NTNib1j1]]NRNcb1m1^]NSNcb1j1`]NUN`b1j1a]NVN_b1h1c]NYN]b1e1g]NXNYb1g1i]NYNVb1f1k]NZNUb1e1l]N[NTb1c1S^NXNma1g1V^NXNia1g1X^NYNha1f1[^NYNda1f1]^NZNda1c1`^N[N`a1e1`^N[N`a1c1c^N^N[a1a1g^N^NYa1a1j^N^NUa1a1l^N`NRa1`1Q_N^No`1_1T_NaNk`1\\1[_NdNb`1S1^eMYNSj0d0_`1n0o_NPOQ`1n0Q`NSOn_1l0U`NSOj_1n0U`NROj_1o0X`NQOe_1Q1Z`NoNe_1o0``NPO__1l0e`NTOQ_1_ORfM\\1Qk0TOk^1BSfMZ1Rk0TOj^1CSfMZ1Yk0nNb^1]1^aNcNa^1\\1gaN^NX^1b1iaN^NV^1b1maN[NS^1f1maNZNR^1g1mk01ON2001OO1O11OO1MZjLYNeU3h14OO11O00O2000O00000010O10O00100O1O00100O10RjL[NlU3g100O100000O100O100O00100000O00001O2N1O2N101O1OO1001O1N01O10000O10O10O001O1O010O00100000OO21N10MYjLWNhU3g131O101N01O0100O01O00001O010O1O0FUjLlNjU3T1VjLkNlU3U1TjLjNlU3W1TjLgNnU3X18O0001O10O1O01O0010O1O0001O01O0010O10OO1100O00O20N20M30NliLcNTV3]11001O0100N20O010N1011N1O0eNiiLY1WV3210O01O10O1M3001N00010O100ON30O1O01O10N11O010N110000O0001O10O1N11O010O01O0100O01O0010O0010O0O110O01O10N2O010O001O100O01000O000010O100O0001OO20O0010O0100O01O00001O001O10O00O1100O10O1OO1010O010O1QjLdNdU3]1XjLiNdU3f1IVN`jLk1_U36O1N2O1N21NO2N2N2O00010kjLcMPU3b2O2M2O10000O1O1001N00002O000ON3OO2000O0100O0O111O000M3O1N2M300N1O2O0O2N200O2N1000O0O21N10O1N1001O1O01O10N1O2N0011OO110N2O1N20ON030O10O0100N20OO11O011NO3ON2000N2N1O11M[NWjLd1iU322N200O01O0010N200N020000O0O20O01O2O0000O00O2O2O00O2N1N11N110O01N1101N2NOXjLYNeU3f151N20ON31O11NI_jLZN^U3h1cjLXN]U3g1djLZNZU3g1fjLYNYU3i19M3O000100O1O1000NVjLYNjU3g1NYNYjLh1gU3XNXjLi1hU3N401ON1O10O201ON2001O00O1O1OO2ON12000OO1010OO02NLWjL`NiU3`1XjL_NhU3`17O01N1O20OO[NUjLf1hU3[NXjLe1hU3401O0O2N1O02OO3N1MNajLRN^U3P232M1O1ON3LajLRN^U3P22N_jLRNaU3m110^jLRNcU3n120N21N1OO200O00010O010M2100O10J51N0200M201M21O000100O0O10O2000O011ON200O1O1O010O1000OM40O11ON200000O10N3O0O1O10000N2O11O0O2OL5O0000000LdMojL\\2QU35O0O02M20N11O1O001N3K1hMhjLY2WU33O02O00O002LcMmjL[2VU312NO0021N2O0N10100000O00NejLkM\\U3T220010N20N11O100O1O1O00O21M2O0012K1200O10O01O1OO2O01O1OO20O10NQN^jLo1bU320O00001O0000100000N1O1010O1O1000OO20M120001NNSN^jLl1cU330O11N1OO_jLPN`U3Q221ON100O20O1O00O20000O0O11N20O0O20M210O0000010O001O10J53M1O11OO000N3M30O3M1O10O0010N2O101O000O1001OM21O10OO01101O0O1NN40OO[jLTNeU3k1\\jLUNdU3j1]jLWNaU3k131O1O010O10N200NZjLUNeU3l11100O000O20000ONO301000O2NNRN_jLn1_U350O2L12000O01O01O01M30O01O12N0M2010L31O100NO30N3O001OO01O0UN[jLh1eU33O12O00N110NO300O1000M2100ON1200O01O0N210000M111000001NNTN]jLk1dU3210O010N20N2O1N20N110000000O1O00001000OO20O01O001O0010O10N3N0001O1O1O0001O1000N21N010M21O1O0002O0OL`jLUN_U3l1ajLTN_U3k152MN40O1O10N20M111OO3N100OO1011NO11O010000O000010000O01O1N10010O0000O20O1O01O10O0010O01O10N0011O010O1O01N2000O000000100OMUN\\jLm1cU322N10O10O00O2O01OLTN`jLl1aU342OMO3OO2O2N01O4K11N2OO2000O01000O00O110O001O1O010O0010000O10OO0110O010O0ZlLUNcQ3k1ZnLUNRN50K^S3k1_nLbN_Q3Z1dlLYNo1>[Q3Z1enLjNXQ3V1hnLPOSQ3o0lnLUOPQ3m0onLUOoP3k0PoLXOoP3g0RoL\\OiP3f0ToL]OlP3c0ToL^OjP3b0VoL@hP3a0XoL_OhP3b0VoL_OiP3b0WoL^OhP3c0WoL^OiP3a0WoL@iP3?XoLAeP3b0[oL[OhP3d0XoL]OgP3c0ZoL]OdP3e0[oL[OfP3e0ZoLZOfP3g0PoLPNhNZ1WR3f0jnLoMiNl1ZR34mnLNUQ32jnLOVQ30jnL1VQ3OinL2WQ3NhnL3WQ3NgnL4XQ3LhnL5TQ3NmnL2SQ3LmnL6SQ3JmnL5TQ3KknL7SQ3JlnL7SQ3GPoL9nP3IQoL7QQ3GPoL9oP3GQoL:nP3FRoL9PQ3GPoL8PQ3IPoL6QQ3JlnLPNoNT2WR3JknL9SQ3InnL7RQ3HnnL7UQ3HjnL9UQ3HjnL7WQ3IinL8VQ3HhnL9YQ3HdnLoMTOX2ZR3HbnL8aQ3G_nL2gQ30XnL0iQ30UnL2kQ3NSnL3mQ3LUnL3iQ3OUnL2mQ3NQnL2QR3NkmLnM@S2gR3OimL2WR30hmLJ_R33QmLoM`0l1bR35^mLKcR36\\mLGeR3;ZmLCiR3>TmLEiR3=WmLBkR3>SmLCnR3;RmLDQS3;llLlMKi1VS3b20OO1NeKmlLZ4TS3gKklLY4US33000O2L300O2N11OMdlLnK]S3R430000L4M3O10O02K300O2N2OOO3O00001N2M0eLlkL[3TT322N0001N11N2N2O1O1N2N10001N002O0O02O03N0NO3O01O1N2N1O101O10O02NO02N2O00010N2N1O002O0O3L21O1O1NcMljL[2VU311N101O1O10O10NfjLiMYU3W221MhMijLX2WU321N20N011O0001L4000O1O01O1O10O0N30N11000O1OO1001000O0001ON22OO1O00010O0O11O3NO0001OO1O110OM4N20O1ON12O1O1O10O1000N2000O01N11O0010O01N2O02M1100O00001OO2O10O0O200O000100O00O020N20N20O0010OO200OO2N11000O1ON3O1O0100O0O2OO2O10O00O10O20O2ON200O01O00O2OO3N01O0O21O0O1NO2100N2ON300O010O0100O00O1100O0010N02O01M120001NN201OO20000O001ON210000O00001OO2N01100000O000O110O01O010LmMdjLT2]U321N1OO12OO0O10O200N11O1O10N20N2O0001O001L`jLSN^U3n150O02OM121OO01O1O10N1001000O01N200O1OO110O1O01M1200O000000001000O0001000ON201OO2O000100N20N11O011ON0200ON30O1O01O01O1O01N20O1N1100MoMajLQ2`U311O10O10NO31NNoMajLR2^U32100N110O0010N11O1O1ONPN`jLQ2^U33101ON0200OO2O01O1N11O100OOajLnM^U3S211OO101O0010N20O1OO11O100OO2N11OO020000N`jLoM_U3R220N11O011N01L31M40OO1ON30N20L40N20O02OO001O00010MnMcjLR2]U321ON21O1N20O02ON1O20N2000N110O0002NN12O1OO20000O000O11O01ON3O10M120N2000N11O1O10O1O10M3O01N2OO20000O00O10100O01N11O00100OO20NOnMcjLS2\\U31djLkM\\U3U2012N100O0O11O1O00O1100O01OO20O1OOmMbjLS2]U32001O10N100010O1O010O01N10N4N10O10OO1001O1O100ONQN`jLn1aU3121M110O1N1100M12N20O1O1O10NO21O1O001O0001000O1O010O1O2MO30010OOO0101O3OOM30N2OM40OOLnjLhMSU3X25L4N2O01N11000O1ON30O001OO20NmMbjLQ20oM]U3T211N2002MO11O10OOO30O0000100O00010O1ON2010O00010OO13M10NmMbjLR2^U3210NO21O02OO0O20O002N01O01ON30ONmMdjLR2\\U31211ON2O0010OO1O12N1O1O1O0001O11N0OO21O00O1101N2ON2NmMbjLQ2^U342OKnMejLQ2\\U322O2OL301OO11001OOO20N2O10NOjMfjLV2[U311N20O00010L22O101NL500M2O2OOJfMQkL^2oT33100ON3NO3OO20O010O001O1OM_MUkL`2kT333O2MO101O10O1O1O100O100O1O1001OMkjLeMVU3[220000N20000000000O100O12NO1O10000N2N2O13M1O1O1OO100O1O1O1O100M3000000O1000000000000001O00000000000000N2N2K5M3N2N21O0000000000001O000000IQjLgNPV3Y16DiiLZOWV3`0PjLZOKMUV3i0XjLWOhU3i0b0N2O100O1O1O1O1N2001OMnhLBSW3>200O100LkhLGVW393N2N200N200000000000000",
        "size": [3317, 4417]
    }
},

For a keypoints object, "keypoints" and "num_keypoints" are exported.
You can export a keypoints object combined with a polygon object when you aligned the keypoints object at the row and the polygon object at the row + 1 on the label table.

"annotations": [
{
    "area": 555429,
    "bbox": [732, 1446, 864, 1309],
    "category_id": 1,
    "id": 1,
    "image_id": 1,
    "iscrowd": 0,
    "keypoints": [1108, 1633, 2, 1104, 1603, 2, 1112, 1596, 1, 1149, 1593, 2, 1146, 1582, 1, 1108, 1730, 2, 1334, 1687, 2, 1061, 1890, 2, 1387, 1936, 2, 1017, 1665, 2, 1458, 2106, 2, 1160, 2060, 2, 1299, 2053, 2, 1174, 2291, 2, 1196, 2291, 2, 1321, 2609, 2, 1196, 2590, 2],
    "num_keypoints": 17,
    "segmentation": [
        [986, 1654, 1030, 1613, 1087, 1596, 1105, 1511, 1168, 1485, 1183, 1449, 1216, 1446, 1239, 1496, 1260, 1557, 1236, 1619, 1267, 1662, 1359, 1678, 1411, 1864, 1477, 2065, 1494, 2157, 1594, 2367, 1454, 2488, 1330, 2578, 1359, 2618, 1409, 2659, 1384, 2695, 1319, 2754, 1303, 2741, 1300, 2710, 1250, 2702, 1099, 2720, 1048, 2705, 1042, 2673, 1105, 2655, 1159, 2601, 1165, 2485, 1054, 2414, 895, 2340, 789, 2304, 732, 2278, 794, 2135, 889, 2013, 970, 1913, 968, 1714]
    ]
},

You can export a keypoints object combined with a cubic bezier object or a pixels object when you aligned the keypoints object at the row and the cubic bezier object or the pixels object at the row + 1 on the label table.

"annotations": [
{
    "area": 2977340,
    "bbox": [1435, 1125, 1105, 3708],
    "category_id": 1,
    "id": 1,
    "image_id": 1,
    "iscrowd": 0,
    "keypoints": [1904, 1495, 2, 1970, 1417, 2, 1822, 1433, 2, 2068, 1481, 2, 1730, 1533, 2, 2308, 1951, 2, 1595, 2075, 2, 2369, 2555, 2, 1561, 2614, 2, 2371, 3076, 2, 1508, 3136, 2, 2172, 3035, 2, 1753, 3101, 2, 2280, 4034, 2, 1806, 4124, 2, 2367, 4833, 1, 1842, 4833, 1],
    "num_keypoints": 17,
    "segmentation":
    {
        "counts": "ZUhc6a0af4b0]Oc0^Oa0^Oc0]Ob0_Ob0]Oc0]Ob0_Ob0]Oc0nnKjJS_3h5T`LkKa^3g4d`LmLP^3f3VaLmM_]3d2haLoNl\\3d1YbLi8bS3jGdkLg8ST3iGTkLi8bT3gGgjLj8oT3gGYjLj8^U3eGjiLm8lU3dG\\iLm8[V3fGihLl8mV3oGQhLb8eW3YHXgLZ8^X3aH_fLP8WY3kHgeLf7oY3UIndL]7iZ3]IUdLT7a[3`b0G9F:F9H1N2N2O1N2O1N2N2O1N2N2O1N2O1N2N2O1N2N2K5J6J6J6K5J6J6J6J6J6J6J6J5K6J6J6J6J6J6J6J6J6J6J6J6J6PgMn]Nd[1]c1WdNh\\NVZ1kd1eeNY[NoY1Te1leNP[NSZ1Re1heNS[NVZ1od1eeNU[NZZ1md1aeNW[N^Z1kd1]eNY[NbZ1id1YeN\\[NeZ1fd1VeN^[NiZ1dd1ReN`[NlZ1cd1odNb[NoZ1`d1ldNd[NS[1^d1hdNf[NW[1\\d1ddNh[N[[1Zd1bdNi[N[[1Zd1bdNh[N\\[1[d1`dNh[N^[1[d1_dNh[N_[1Zd1^dNh[N`[1[d1]dNg[Na[1\\d1\\dNg[Na[1\\d1\\dNf[Nc[1\\d1ZdNf[Nd[1]d1YdNe[Ne[1^d1XdNe[Nf[1]d1VdNf[Nh[1]d1UdNe[Ni[1]d1UdNf[Nh[1]d1UdNe[Nj[1]d1SdNe[Nk[1^d1RdNd[N^[1md1_dNV[NlZ1_e1QeNcZNZZ1Sf1ceNoYNTZ1[f1heNiYNTZ1[f1ieNgYNUZ1\\f1heNfYNUZ1^f1heNeYNUZ1^f1heNdYNUZ1`f1heNbYNVZ1af1geNaYNVZ1bf1heNaYNTZ1cf1ieN_YNUZ1cf1heN`YNUZ1cf1ieN`YNTZ1cf1ieN_YNTZ1df1jeN^YNTZ1ef1ieN]YNTZ1ff1jeN]YNSZ1ef1keN]YNRZ1gf1keN[YNSZ1gf1jeN]YNoV1ji1nhNXVNPW1ji1nhNXVNoV1ki1ohNWVNnV1mi1ohNVVNmV1mi1QiNUVNlV1ni1RiNTVNkV1Pj1RiNSVNjV1Pj1TiNRVNjV1Qj1RiNRVNkV1Qj1SiNRVNiV1Qj1UiNQVNhV1ej1chN]UNZW1[k1ogNgTNnW1Pl1\\gNSTNaX1dl1hfN^SNUY1Ym1UfNiRNhY1mm1ceNVRNYZ1Xn1XeNlQNeZ1an1mdNcQNP[1jn1cdNYQN`CdIWd1aU2jgNPQNkCcIXd1iU2_gNhPNVDbIXd1TV2SgN^PNbDaIXd1^V2ifNUPNlD`IWd1iV2^fNkoMXE_IWd1SW2SfNboMcE^IWd1]W2heNZoMmE]IXd1fW2\\eNQoMZF[IWd1QX2ReNgnMdF[IWd1\\X2fdN]nMPG[IVd1eX2\\dNUnMZGYIWd1oX2QdNlmMeGXIWd1ZY2fcNamMQHXIUd1gY2YcNVmM^HVIWd1RZ2kbNllMkHUIWd1_Z2]bN`lMYIUIVd1jZ2RbNTlMfITIUd1W[2eaNjkMRJRIVd1d[2WaN^kM`JRIUd1o[2k`NSkMmJQIVd1[\\2\\`NijM[KnHVd1h\\2l_NajMkKkHUd1T]2S_NajMeL^H?mMfa1c_2Y`NcjM_MPH=oMha1m_2`_NejMXNbG:QNka1X`2f^NejMROUG7UNma1``2n]NfjMKhF5WNPb1j`2R]NijMe0ZF3XNSb1]m2h]N]TM0[NUb1[m2h]N]TMM^NXb1Ym2g]N]TMK_N[b1Wm2g]N]TMIaN]b1Um2h]N\\TMFdN`b1Rm2g]N[VMVb1ii2f]NZVMWb1ii2f]N[VMVb1hi2h]NZVMUb1[o2M3M3N2O1O100O1O1O2M2O1O1O1O1O1O1O1O1O2N1O1N2O1O1O1O1O1O1O1O2N1O1O1N2O1O1O1O1O1O1O2N1O1O1O1N200O1O1O1O2N1O100O1O1O1O1O1O100O2N1O1O1O1O1O100O1O1O2N1O1O100O1O1O1O1O1O101N1O1O1O1O1O100O1O1O9G?A>B?A>C=B?A>B?A>B>B?B4K5K5K4L5L4K5K5K5K5L4K5K4L5K5L4K5K5K5L4K4L5K5K5L4K5K5K5K4M4K1O1O100O1O1O1O100O1O1O1O100O1O1O100O1O1O1O100O10000O100O10000O10000O100O10000O10000O100O10000O10000O100O10000O100O10000O10000O100O10000O10000O100O10000O10000O100O10000O100O10000O10000O100O10000O100O1O100O1O1O100O100O100O100O100O100O100O100O100O100O10000O100O100O100O100O100O100O100O100O100O100O100O1000000001O00001O0000001O0000001O0000001O0000001O00000`N`1UMl2UOj0ZOf0ZOf0YOh0YOf0ZOg0N2O1O001O1O1O0O2O1O1O001O1O1O0O2O1O00001O00001N10001O0000001O0O101O1O1O1O1O1O1N2O1O1O1O1O1O1O1N2O1O1O1O1O1O001N2O1O1O1O1O1O1O1jhL\\bNkT3f]1TkL[bNkT3f]1TkLZbNlT3g]1SkLZbNlT3g]1SkLYbNmT3h]1RkLYbNmT3h]1RkLXbNnT3i]1QkLXbNnT3i]1QkLWbNnT3k]1QkLVbNnT3k]1QkLUbNoT3l]1PkLUbNoT3l]1PkLTbNPU3m]1ojLTbNPU3l]1ojLUbNQU3l]1mjLUbNSU3l]1kjLVbNSU3l]1ljLTbNTU3m]1jjLUbNUU3l]1ijLUbNWU3l]1gjLVbNXU3k]1fjLVbNZU3k]1ejLVbNZU3k]1djLWbN[U3j]1cjLYbNZU3i]1djLYbN[U3h]1cjLZbN\\U3g]1bjL[bN\\U3g]1cjL[bN[U3f]1cjL\\bN\\U3e]1\\jLcbNbU3_]1RjLmbNmU3V_1N1N2O2N1N2O1N3N1O1N2O2N2M3N3L3N2N2N2O2M2N2N2N2N3M2O1N2N2N3M2N2N2O1N3M2N2N2N2N3N1N2N2N2N2N1O2O1N2N2N2N2N1O2O1N2N2N2N2N5K4M4K4L5K4L5K4L5K4L5K4L5K4L5K>B?A?A?A?A`0@5K1N3N2N1O2N1O2N1O2N2N1O2N1O2N2N1O2M4M3M2N3M3M2N3M3M2N3M3M2N3M2N3M2M4L4L3M4kYMjSNXa2Xl1d^MkSNZa2Yl1a^MiSN^a2Zl1^^MhSNaa2\\l1Y^MhSNea2[l1W^MgSNia2\\l1R^MfSNma2]l1o]MeSNPb2_l1k]MdSNSb2_l1h]MdSNWb2`l1d]MbSN[b2bl1`]MaSN_b2fl1X]M\\SNgb2kl1Q]MWSNnb2Qm1i\\MRSNUc2Um1b\\MnRN]c2Zm1Z\\MhRNfc2_m1Q\\MdRNmc2cm1k[M_RNTd2im1c[MYRN\\d2om1Z[MURNed2Qn1S[MQRNmd2Vn1jZMlQNVe2QP2O00001O0000001O00001O00001O00001O00001O0003N1N3M2O2M2N3M2O2M2N2O2M2N3N1N3M2O2M2N2O2M2N3N1N3M2O2M2ZWNTYMRa1of2e^NWYM[a1kf2]^N[YMda1ff2Z^NZYMfa1if2W^NWYMia1kf2T^NVYMma1lf2P^NTYMPb1nf2m]NSYMSb1Pg2j]NPYMWb1Qg2g]NoXMYb1Tg2c]NmXM]b1Ug2a]NkXM`b1Wg2\\]NjXMdb1Xg2Z]NhXMfb1\\g2U]NeXMlb1]g2Q]NcXMob1`g2n\\N`XMRc1cg2W[NlWMcMb0Wg1dg2Q[NmWMgM?Xg1gg2lZNnWMiM<[g1ig2hZNmWMlM:]g1kg2bZNnWMoM8_g1mg2^ZNnWMQN5ag1Qh2XZNmWMVN2bg1Th2SZNmWMYN0eg1Uh2nYNnWM[NMgg1Xh2iYNnWM^NKig1Zh2eYNmWMaNIkg1\\h2_YNoWMdNEmg1_h2[YNnWMfNDog1ah2VYNnWMjNAQh1ch2PYNPXMlN^OTh1fh2kXNnWMPO\\OUh1ih2fXNnWMSOZOXh1jh2aXNoWMUOWOZh1mh2\\XNoWMYOTO[h1Pi2WXNoWM\\ORO^h1Ri2QXNoWM_OoN`h1Ui2lWNoWMBmNbh1Xi2gWNmWMFkNdh1Zi2aWNoWMIgNfh1^i2[WNnWMLfNih1_i2WWNnWMLeNnh1_i2QWNQYMoh1aj200001O000000000000001O000000000000001O000000000000001O000000000000001O0000000000001O000000000000001O001O001O001O001O001O001O001O001O001O001O001O001O001O1O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O001O2N3M2N2N3M2N3M2N2N3M2N3M2N3M2N2N3M2N3UC]TNQnMek1mQ2dTNjmM_k1SR2kTNcmMWk1[R2SUN[mMoj1VX1TTN\\VOW1TAhj1RX1nTNXVOd0\\A`j1oW1hUNTVO2cAZj1jW1`VNRVO@jAWj1bW1UWNSVOnNQBSj1[W1lWNRVO[NYBPj1RW1bXNTVOhM`Bmi1jV1WYNPgNZJU7l2gJii1[ObSNjm0\\6cmNWLa:k1nHWh1KiTN\\n0j5PkNUNk=l0RGcf1S1[UNoLUN^l0V>]^O\\I^ETe1V2lUN^LlN_l0U=^_OQI]EYe1e1]VNnK[Ogl0Z]1M4L4L4LlXZS5",
        "size": [4834, 3648]
    }
},

In "categories", "keypoints" and "skeleton" are exported.

"categories": [
{
    "id": 1,
    "keypoints": ["nose", "leftEye", "rightEye", "leftEar", "rightEar", "leftShoulder", "rightShoulder", "leftElbow", "rightElbow", "leftWrist", "rightWrist", "leftHip", "rightHip", "leftKnee", "rightKnee", "leftAnkle", "rightAnkle"],
    "name": "person",
    "skeleton": [
        [9, 11],
        [6, 12],
        [14, 16],
        [7, 13],
        [15, 17],
        [12, 13],
        [14, 12],
        [8, 6],
        [10, 8],
        [6, 7],
        [9, 7],
        [15, 13],
        [5, 3],
        [3, 1],
        [1, 2],
        [2, 4]
    ]
},

keypoints_pixels_coco

Import COCO JSON file

The COCO JSON file is imported to annotation files in the current folder.
Before importing, be sure that you opened images folder and annotations folder.

Import COCO JSON per image files

You can import the COCO RLE JSON files of the SA-1B dataset.
This COCO format does not include the "category_id" so that each label name is set from the first element of the label name history.
Before importing, be sure that you opened images folder and annotations folder.

{
    "image":
    {
        "image_id": 1,
        "width": 1500,
        "height": 2060,
        "file_name": "sa_1.jpg"
    },
    "annotations": [
    {
        "bbox": [866.0, 946.0, 132.0, 199.0],
        "area": 14773,
        "segmentation":
        {
            "size": [2060, 1500],
            "counts": "TS_f15SP27K3N2iTNHWf1:bYN0Yf12cYN1\\f11mWN7SNKni11PVNS2OmMPj15aUN\\2;aMSj1m3`UNVL_j1m4N1O1O1O10000O10O10O100000000O10000O100O1O100O101O000000000O10O101N1N2N2O1O100O100\\KhUNT3Wj1jLnUNS3Tj1kLoUNR3Rj1mLTVNW3ci1hL`VNW3_i1hLdVNV3\\i1iLfVNV3Zi1jLgVNU3Yi1jLiVNV3Vi1jLlVNT3Ti1kLnVNT3Ri1lLoVNS3Qi1lLQWNS3oh1mLRWNR3nh1nLSWNQ3mh1nLVWNP3jh1PMWWNo2ih1QMXWNl2jh1TMWWNg2mh1XMUWNV1gNlN_j1NkVNS1jNkN]j12jVNQ1lNiN\\j16jVNm0mNjN[j19iVNk0nNjNZj1;iVNh0QOkNVj1=jVNe0TOjNTj1a0jVN3EXObi1e0YYNVOjf1j0\\4001O00001O00001O00001O10O01O001O1O1O1O1O2N1O1O1O1O1O1O100O101N10000O00100O1O1O100O1O1O0000lNRRNGQn17S1O2N1O101M4Mom^o0"
        },
        "predicted_iou": 0.9523417353630066,
        "point_coords": [
            [940.9375, 1034.5625]
        ],
        "crop_box": [622.0, 902.0, 567.0, 707.0],
        "id": 523353737,
        "stability_score": 0.9742233753204346
    },
    ...
}

Export Labelme JSON files

Annotation files are exported as Labelme JSON files.

{
    "flags":
    {},
    "imageData": null,
    "imageHeight": 3022,
    "imagePath": "wembley-S3Vq97p3gSk-unsplash.jpg",
    "imageWidth": 4666,
    "shapes": [
    {
        "flags":
        {},
        "group_id": null,
        "label": "anemonefish",
        "points": [
            [2152.53857421875, 556.815673828125],
            [2149.539306640625, 586.8057861328125],
            [2156.53759765625, 613.79681396484375],
            [2245.5185546875, 698.7686767578125],
            [2314.50390625, 737.75579833984375],
            [2308.505126953125, 782.74090576171875],
            [2315.503662109375, 814.73028564453125],
            [2331.500244140625, 835.723388671875],
            [2383.489013671875, 836.7230224609375],
            [2420.481201171875, 800.73492431640625],
            [2427.479736328125, 785.73992919921875],
            [2424.480224609375, 764.746826171875],
            [2511.461669921875, 775.74322509765625],
            [2524.458740234375, 795.736572265625],
            [2580.44677734375, 830.72503662109375],
            [2647.432373046875, 827.72601318359375],
            [2661.429443359375, 795.736572265625],
            [2661.429443359375, 772.74420166015625],
            [2653.43115234375, 757.7491455078125],
            [2675.426513671875, 762.74749755859375],
            [2681.42529296875, 800.73492431640625],
            [2692.4228515625, 797.7359619140625],
            [2701.4208984375, 737.75579833984375],
            [2723.416259765625, 687.7723388671875],
            [2744.41162109375, 662.78057861328125],
            [2735.41357421875, 647.78558349609375],
            [2722.41650390625, 650.78460693359375],
            [2697.421875, 641.78753662109375],
            [2737.4130859375, 599.80145263671875],
            [2737.4130859375, 569.8114013671875],
            [2668.427978515625, 529.82464599609375],
            [2580.44677734375, 522.82696533203125],
            [2535.45654296875, 494.83621215820312],
            [2533.45703125, 482.84017944335938],
            [2508.46240234375, 447.85174560546875],
            [2452.474365234375, 422.86001586914062],
            [2432.478515625, 420.86068725585938],
            [2393.48681640625, 430.85739135742188],
            [2375.49072265625, 457.84844970703125],
            [2284.51025390625, 479.84115600585938],
            [2215.525146484375, 506.83224487304688],
            [2160.536865234375, 543.82000732421875]
        ],
        "shape_type": "polygon"
    }],
    "version": "4.0.0"
}

Import Labelme JSON files

The Labelme JSON files are imported to annotation files in the current folder.
Before importing, be sure that you opened images folder and annotations folder.

Export YOLO txt files

Annotation files are exported in the YOLO text format.

├── datasets
│   └── sneakers
│       ├── images
│       └── labels
└── yolov5
    └── data
        └── sneakers.yaml

A YOLO text file is saved per an image.
For a box object, the bounding box is saved.
Where center_x, center_y, width, and height are float values relative to width and height of the image.

class_index center_x center_y width height
0 0.464615 0.594724 0.680000 0.769784

For a rotated box, polygon, cubic bezier, line, point, and pixels object, the points coordinates are saved.
This format is for YOLOv5 and YOLOv8 Instance Segmentation.

class_index x1 y1 x2 y2 x3 y3 ...
0 0.180027 0.287930 0.181324 0.280698 0.183726 0.270573 ...

For a keypoints object, the bounding box and the points coordinates are saved.
This format is for YOLOv8 and YOLO-Pose.

class_index center_x center_y width height x1 y1 v1 x2 y2 v2 x3 y3 v3 ...
0 0.545230 0.616880 0.298794 0.766239 0.522073 0.309332 2 0.540170 0.293193 2 0.499589 0.296503 2 ...

yolo_polygon

Import YOLO txt files

The YOLO text files are imported to annotation files in the current folder.
Before importing, be sure that you opened images folder and annotations folder.

Export DOTA txt files

Annotation files are exported in the DOTA oriented bounding box (OBB) text format.
This format is for Yolov5 for Oriented Object Detection, MMRotate, and YOLOv8 OBB.

x1 y1 x2 y2 x3 y3 x4 y4 category difficult
1300.536987 1413.503784 1192.848755 1535.568848 530.876038 951.562073 638.564270 829.497009 truck 0

draw_obb

Import DOTA txt files

The DOTA text files are imported to annotation files in the current folder.
Before importing, be sure that you opened images folder and annotations folder.

Export CSV file

Annotation files are exported as an CSV file.
To train a Turi Create Object Detection model, select "image" for each line and check on the "Convert to boxes" checkbox.
(x, y) means the center of the box where (0, 0) is the top-left corner.

path,annotations
/Users/ryo/rcam/test_annotations/sneakers/images/sneakers-1.jpg,[{"label":"sneakers","coordinates":{"x":302,"y":248,"width":442,"height":321}}]

When you select "image" for each line and check off the "Convert to boxes" checkbox.

path,annotations
/Users/ryo/rcam/test_annotations/sneakers/images/sneakers-1.jpg,[{"label":"sneakers","type":"rectangle","coordinates":{"x":302,"y":248,"width":442,"height":321}}]

When you select "label" for each line and check on the "Convert to boxes" checkbox.

filename,width,height,label,xmin,ymin,xmax,ymax
/Users/ryo/rcam/test_annotations/sneakers/images/sneakers-1.jpg,650,417,sneakers,81,88,522,408

When you select "label" for each line and check off the "Convert to boxes" checkbox.

filename,width,height,label,type,annotations
/Users/ryo/rcam/test_annotations/sneakers/images/sneakers-1.jpg,650,417,sneakers,rectangle,81,88,522,408

Import CSV file

The CSV file is imported to annotation files in the current folder.
Before importing, be sure that you opened images folder and annotations folder.

Export train/val/test folders

Specify the split ratio "80/10/10" so that all images are split into train, validation, and test sets.
When the shuffle checkbox is ON, images are randomly shuffled everytime you export. When the shuffle checkbox is OFF, images are taken from the current sort according to the split ratio.
You can export train/val/test folders and the yaml file at once in the YOLO format or PASCAL VOC XML format. This exported folder can be uploaded to Roboflow directly.

Export train/val/test.txt files

Specify the split ratio "80/10/10" so that all images are split into train, validation, and test sets.
When the shuffle checkbox is ON, images are randomly shuffled everytime you export. When the shuffle checkbox is OFF, images are taken from the current sort according to the split ratio.
In the specified folder, train.txt, val.txt, and test.txt are saved.

sneakers-1.jpg
sneakers-2.jpg
...

Using "Full path" option, you can save full paths. Or you can add prefix to file names.

/Users/ryo/Desktop/test_annotations/sneakers/images/sneakers-1.jpg
/Users/ryo/Desktop/test_annotations/sneakers/images/sneakers-2.jpg
...

Export object names file

The object names file is created from the objects table on the settings dialog.
YOLOv5 and YOLOv8 yaml file as dictionary.
The "flip_idx" array is to flip the "left" included keypoint position and the "right" included keypoint position.

path: ../datasets/keypoints
train: images
val: images

kpt_shape: [17, 3]
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]

names:
  0: person

YOLOv5 yaml file as array.

path: ../datasets/sneakers
train: images
val: images

nc: 2
names: ['sneakers', 'ignore']

Object names text file.

sneakers
ignore

Tensorflow Object Detection API label map file.

item {
  id: 1
  name: 'sneakers'
}

item {
  id: 2
  name: 'ignore'
}

Import object names file

You can import an object names file or import object names from xml files.

Export mask images

The mask images are exported in the PNG format.
Run an instance segmentation model on Tensorflow Object Detection API.
You can specify which mask image to export.

  • Export an image includes all objects: An indexed color image which includes all objects is saved as {image_file_name}_all_objects.png.
  • Export an image per object class: A grayscale image per object class is saved as {image_file_name}class{class_name}.png.
  • Export an image per object: A grayscale image per object is saved as {image_file_name}_object{object_idx}.png.

For the indexed color image, overlaps of objects are based on the layer order on the label table.
Pixel values are set based on the object index on the objects table and 0 is set for the background.
The indexed color table is created from object colors on the objects table.
For grayscale images, pixel values are set 255 for the foreground and 0 for the background.

mask

Export screenshots

You can export images and annotations as jpg images.
It exports labels when showing labels on boxes and exports coordinates when showing coordinates on boxes.

screenshot

Export augmented images

Images and annotations are augmented using "Flip", "Crop", "Contrast", and "Rotate".
For "Flip", each image is flipped horizontally with 0.5 probability.
For "Crop", each image is cropped to [100% - value, 100%] of the original size.
For "Contrast", each image contrast is changed to [100% - value, 100% + value].
For "Rotate", each image is rotated to [-value, value] degrees.
For "Number of augmented images", the number of generated images from an image through the augmentation.
If the object is cut out so that the bounding box size is less than 0.01 of the original size, the object is removed.
To flip keypoints horizontally, use "left" and "right" prefix or suffix for each keypoint name.

augment

Export sliced images

Images and annotations are sliced horizontally and vertically.
For "Horizontal slices", each image is sliced horizontally by the number of horizontal slices.
For "Vertical slices", each image is sliced vertically by the number of vertical slices.

slice

Export images for classification

All images are exported into object-named subfolders.
Creating an Image Classifier Model on Create ML.

└── saved_folder
    ├── object0
    ├── object1
    └── object2

Export objects and attributes stats

The number of used objects is saved as objects_stats.txt file.
The number of used attributes is saved as attributes_stats.txt file.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant