-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataload.py
50 lines (38 loc) · 1.01 KB
/
Dataload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 16 14:43:37 2019
@author: gusag
"""
import numpy as np
import pandas as pd
import glob
def make_df(path):
all_files = glob.glob(path)
#print(all_files)
li = []
i = 0
for filename in all_files:
i += 1
df = pd.read_csv(filename, encoding = 'ISO-8859-1')
df = df[['publish_time','trending_date','title','category_id','views','likes','dislikes','comment_count']]
df['country'] = i
li.append(df)
frame = pd.concat(li, axis=0, ignore_index=True)
print("Dataframe made!")
return frame
def covariance(Feat1,Feat2,CountryID):
make_df()
x = frame[[Feat1,Feat2,'country']]
x = x[x['country']==CountryID]
x = x[[Feat1,Feat2]]
c = np.cov(x.T)
print(x)
print(c)
#print(frame)
'''
raw_data = df.get_values()
print(raw_data)
cols = range(0, 7)
attributeNames = np.asarray(df.columns[cols])
print(attributeNames)
'''