-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_analysis.R
74 lines (52 loc) · 2.85 KB
/
run_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
library(dplyr)
filename <- "Coursera_DS3_Final.zip"
#Checking if archieve already exists.
if (!file.exists(filename)){
fileURL <- "https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip"
download.file(fileURL, filename, method="curl")
}
* Checking if folder exists
if (!file.exists("UCI HAR Dataset")) {
unzip(filename)
}
#Assigning all data frames
features <- read.table("UCI HAR Dataset/features.txt", col.names = c("n","functions"))
activities <- read.table("UCI HAR Dataset/activity_labels.txt", col.names = c("code", "activity"))
subject_test <- read.table("UCI HAR Dataset/test/subject_test.txt", col.names = "subject")
x_test <- read.table("UCI HAR Dataset/test/X_test.txt", col.names = features$functions)
y_test <- read.table("UCI HAR Dataset/test/y_test.txt", col.names = "code")
subject_train <- read.table("UCI HAR Dataset/train/subject_train.txt", col.names = "subject")
x_train <- read.table("UCI HAR Dataset/train/X_train.txt", col.names = features$functions)
y_train <- read.table("UCI HAR Dataset/train/y_train.txt", col.names = "code")
#Step 1: Merges the training and the test sets to create one data set.
X <- rbind(x_train, x_test)
Y <- rbind(y_train, y_test)
Subject <- rbind(subject_train, subject_test)
Merged_Data <- cbind(Subject, Y, X)
#Step 2: Extracts only the measurements on the mean and standard deviation for each measurement.
TidyData <- Merged_Data %>% select(subject, code, contains("mean"), contains("std"))
#Step 3: Uses descriptive activity names to name the activities in the data set.
TidyData$code <- activities[TidyData$code, 2]
#Step 4: Appropriately labels the data set with descriptive variable names.
names(TidyData)[2] = "activity"
names(TidyData)<-gsub("Acc", "Accelerometer", names(TidyData))
names(TidyData)<-gsub("Gyro", "Gyroscope", names(TidyData))
names(TidyData)<-gsub("BodyBody", "Body", names(TidyData))
names(TidyData)<-gsub("Mag", "Magnitude", names(TidyData))
names(TidyData)<-gsub("^t", "Time", names(TidyData))
names(TidyData)<-gsub("^f", "Frequency", names(TidyData))
names(TidyData)<-gsub("tBody", "TimeBody", names(TidyData))
names(TidyData)<-gsub("-mean()", "Mean", names(TidyData), ignore.case = TRUE)
names(TidyData)<-gsub("-std()", "STD", names(TidyData), ignore.case = TRUE)
names(TidyData)<-gsub("-freq()", "Frequency", names(TidyData), ignore.case = TRUE)
names(TidyData)<-gsub("angle", "Angle", names(TidyData))
names(TidyData)<-gsub("gravity", "Gravity", names(TidyData))
#Step 5: From the data set in step 4, creates a second, independent tidy data set with the average of each variable for each activity and each subject.
FinalData <- TidyData %>%
group_by(subject, activity) %>%
summarise_all(funs(mean))
write.table(FinalData, "FinalData.txt", row.name=FALSE)
#Checking variable names
str(FinalData)
#Taking look at final data
FinalData