Skip to content

Latest commit

 

History

History
137 lines (125 loc) · 2.64 KB

README.md

File metadata and controls

137 lines (125 loc) · 2.64 KB

Python - Exploratory Data Analysis CheatSheet

Reading a CSV file

Use header=None when the columns are not labeled in your csv file

df = pd.read_csv("pathToFile.csv", header=None)

Reading an Excel(.xlsx) file

Use header=None when the columns are not labeled in your xlsx file

df = pd.read_excel("pathToFile.xlsx", header=None)

Show first 5 rows of a DataFrame

df.head()

Show last 5 rows of a DataFrame

df.tail()

Show shape of the dataframe

df.shape

Show all column names in the DataFrame

df.columns

Count occurances of all unique values in a column

df['column_name'].value_counts()

Show mean, std dev, max etc for each column

df.describe()

Show sum of all null/NaN rows in each column

df.isnull().sum()

Show datatypes for all columns

df.info()

Heat Map of where and which columns has null/NaN values

NOTE: import seaborn as sns

sns.heatmap(df.isnull())

Drop multiple columns at once

axis=1 is for columns

df.drop(['column_1','column_2'],axis=1,inplace=True)

Fill NaN values with mean value of a column

df['column_name']=df['column_name'].fillna(df['column_name'].mean())

Get numerical values for categorical data

df['column_name'] = pd.factorize(df['column_name'])[0]

Get all unique calues in categorical data

unique = pd.factorize(df['column_name'])[1]

Show all indexs in the dataframe

df.index

Convert dataframe to numpy array (column names are ignored and only float/integers allowed)

df.to_numpy()

Sort values by a column

df.sort_values(by='colName')

Copy a whole dataframe

df.copy()

Drop the rows which have Nan values

df.dropna()

Replace Nan values with a specified value

df.fillna(value=10)

Return a dataframe of boolean values to check Nan values

pd.isna(df)

Calculate the mean of each column

df.mean()

Calculate the mean of each row

df.mean(1)

Concatenate dataframes

pd.concat([df[:2],df[3:6]])

Merge two dataframes with a custom index

pd.merge(df1,df2,on='indexColName')

Groupby column and sum

df.groupby('colName').sum()

Subtract all columns by a specific column

df.subtract(df['col'],axis=0)

Save a dataframe to csv file

df.to_csv('filename.csv')

Save a dataframe to excel sheet

df.to_excel('filename.xlsx',sheet_name='Sheet1')