-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_wb.py
274 lines (211 loc) · 10.7 KB
/
train_wb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from model import build_transformer
from dataset import BilingualDataset, causal_mask
from config import get_config, get_weights_file_path
import torchtext.datasets as datasets
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
from torch.optim.lr_scheduler import LambdaLR
import warnings
from tqdm import tqdm
import os
from pathlib import Path
# Huggingface datasets and tokenizers
from datasets import load_dataset
from tokenizers import Tokenizer
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
from tokenizers.pre_tokenizers import Whitespace
import wandb
import torchmetrics
def greedy_decode(model, source, source_mask, tokenizer_src, tokenizer_tgt, max_len, device):
sos_idx = tokenizer_tgt.token_to_id('[SOS]')
eos_idx = tokenizer_tgt.token_to_id('[EOS]')
# Precompute the encoder output and reuse it for every step
encoder_output = model.encode(source, source_mask)
# Initialize the decoder input with the sos token
decoder_input = torch.empty(1, 1).fill_(sos_idx).type_as(source).to(device)
while True:
if decoder_input.size(1) == max_len:
break
# build mask for target
decoder_mask = causal_mask(decoder_input.size(1)).type_as(source_mask).to(device)
# calculate output
out = model.decode(encoder_output, source_mask, decoder_input, decoder_mask)
# get next token
prob = model.project(out[:, -1])
_, next_word = torch.max(prob, dim=1)
decoder_input = torch.cat(
[decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(device)], dim=1
)
if next_word == eos_idx:
break
return decoder_input.squeeze(0)
def run_validation(model, validation_ds, tokenizer_src, tokenizer_tgt, max_len, device, print_msg, global_step, num_examples=2):
model.eval()
count = 0
source_texts = []
expected = []
predicted = []
try:
# get the console window width
with os.popen('stty size', 'r') as console:
_, console_width = console.read().split()
console_width = int(console_width)
except:
# If we can't get the console width, use 80 as default
console_width = 80
with torch.no_grad():
for batch in validation_ds:
count += 1
encoder_input = batch["encoder_input"].to(device) # (b, seq_len)
encoder_mask = batch["encoder_mask"].to(device) # (b, 1, 1, seq_len)
# check that the batch size is 1
assert encoder_input.size(
0) == 1, "Batch size must be 1 for validation"
model_out = greedy_decode(model, encoder_input, encoder_mask, tokenizer_src, tokenizer_tgt, max_len, device)
source_text = batch["src_text"][0]
target_text = batch["tgt_text"][0]
model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy())
source_texts.append(source_text)
expected.append(target_text)
predicted.append(model_out_text)
# Print the source, target and model output
print_msg('-'*console_width)
print_msg(f"{f'SOURCE: ':>12}{source_text}")
print_msg(f"{f'TARGET: ':>12}{target_text}")
print_msg(f"{f'PREDICTED: ':>12}{model_out_text}")
if count == num_examples:
print_msg('-'*console_width)
break
# Evaluate the character error rate
# Compute the char error rate
metric = torchmetrics.CharErrorRate()
cer = metric(predicted, expected)
wandb.log({'validation/cer': cer, 'global_step': global_step})
# Compute the word error rate
metric = torchmetrics.WordErrorRate()
wer = metric(predicted, expected)
wandb.log({'validation/wer': wer, 'global_step': global_step})
# Compute the BLEU metric
metric = torchmetrics.BLEUScore()
bleu = metric(predicted, expected)
wandb.log({'validation/BLEU': bleu, 'global_step': global_step})
def get_all_sentences(ds, lang):
for item in ds:
yield item['translation'][lang]
def get_or_build_tokenizer(config, ds, lang):
tokenizer_path = Path(config['tokenizer_file'].format(lang))
if not Path.exists(tokenizer_path):
# Most code taken from: https://huggingface.co/docs/tokenizers/quicktour
tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
tokenizer.pre_tokenizer = Whitespace()
trainer = WordLevelTrainer(special_tokens=["[UNK]", "[PAD]", "[SOS]", "[EOS]"], min_frequency=2)
tokenizer.train_from_iterator(get_all_sentences(ds, lang), trainer=trainer)
tokenizer.save(str(tokenizer_path))
else:
tokenizer = Tokenizer.from_file(str(tokenizer_path))
return tokenizer
def get_ds(config):
# It only has the train split, so we divide it overselves
ds_raw = load_dataset('opus_books', f"{config['lang_src']}-{config['lang_tgt']}", split='train')
# Build tokenizers
tokenizer_src = get_or_build_tokenizer(config, ds_raw, config['lang_src'])
tokenizer_tgt = get_or_build_tokenizer(config, ds_raw, config['lang_tgt'])
# Keep 90% for training, 10% for validation
train_ds_size = int(0.9 * len(ds_raw))
val_ds_size = len(ds_raw) - train_ds_size
train_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size])
train_ds = BilingualDataset(train_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
val_ds = BilingualDataset(val_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
# Find the maximum length of each sentence in the source and target sentence
max_len_src = 0
max_len_tgt = 0
for item in ds_raw:
src_ids = tokenizer_src.encode(item['translation'][config['lang_src']]).ids
tgt_ids = tokenizer_tgt.encode(item['translation'][config['lang_tgt']]).ids
max_len_src = max(max_len_src, len(src_ids))
max_len_tgt = max(max_len_tgt, len(tgt_ids))
print(f'Max length of source sentence: {max_len_src}')
print(f'Max length of target sentence: {max_len_tgt}')
train_dataloader = DataLoader(train_ds, batch_size=config['batch_size'], shuffle=True)
val_dataloader = DataLoader(val_ds, batch_size=1, shuffle=True)
return train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt
def get_model(config, vocab_src_len, vocab_tgt_len):
model = build_transformer(vocab_src_len, vocab_tgt_len, config["seq_len"], config['seq_len'], d_model=config['d_model'])
return model
def train_model(config):
# Define the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
# Make sure the weights folder exists
Path(config['model_folder']).mkdir(parents=True, exist_ok=True)
train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt = get_ds(config)
model = get_model(config, tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size()).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], eps=1e-9)
# If the user specified a model to preload before training, load it
initial_epoch = 0
global_step = 0
if config['preload']:
model_filename = get_weights_file_path(config, config['preload'])
print(f'Preloading model {model_filename}')
state = torch.load(model_filename)
model.load_state_dict(state['model_state_dict'])
initial_epoch = state['epoch'] + 1
optimizer.load_state_dict(state['optimizer_state_dict'])
global_step = state['global_step']
del state
loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer_src.token_to_id('[PAD]'), label_smoothing=0.1).to(device)
# define our custom x axis metric
wandb.define_metric("global_step")
# define which metrics will be plotted against it
wandb.define_metric("validation/*", step_metric="global_step")
wandb.define_metric("train/*", step_metric="global_step")
for epoch in range(initial_epoch, config['num_epochs']):
torch.cuda.empty_cache()
model.train()
batch_iterator = tqdm(train_dataloader, desc=f"Processing Epoch {epoch:02d}")
for batch in batch_iterator:
encoder_input = batch['encoder_input'].to(device) # (b, seq_len)
decoder_input = batch['decoder_input'].to(device) # (B, seq_len)
encoder_mask = batch['encoder_mask'].to(device) # (B, 1, 1, seq_len)
decoder_mask = batch['decoder_mask'].to(device) # (B, 1, seq_len, seq_len)
# Run the tensors through the encoder, decoder and the projection layer
encoder_output = model.encode(encoder_input, encoder_mask) # (B, seq_len, d_model)
decoder_output = model.decode(encoder_output, encoder_mask, decoder_input, decoder_mask) # (B, seq_len, d_model)
proj_output = model.project(decoder_output) # (B, seq_len, vocab_size)
# Compare the output with the label
label = batch['label'].to(device) # (B, seq_len)
# Compute the loss using a simple cross entropy
loss = loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1))
batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}"})
# Log the loss
wandb.log({'train/loss': loss.item(), 'global_step': global_step})
# Backpropagate the loss
loss.backward()
# Update the weights
optimizer.step()
optimizer.zero_grad(set_to_none=True)
global_step += 1
# Run validation at the end of every epoch
run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step)
# Save the model at the end of every epoch
model_filename = get_weights_file_path(config, f"{epoch:02d}")
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'global_step': global_step
}, model_filename)
if __name__ == '__main__':
warnings.filterwarnings("ignore")
config = get_config()
config['num_epochs'] = 30
config['preload'] = None
wandb.init(
# set the wandb project where this run will be logged
project="pytorch-transformer",
# track hyperparameters and run metadata
config=config
)
train_model(config)