forked from pytorch/vision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_video_reader.py
1237 lines (1120 loc) · 44.8 KB
/
test_video_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import collections
import math
import os
import time
import unittest
from fractions import Fraction
import numpy as np
import torch
import torchvision.io as io
from numpy.random import randint
from torchvision.io import _HAS_VIDEO_OPT
try:
import av
# Do a version test too
io.video._check_av_available()
except ImportError:
av = None
from urllib.error import URLError
VIDEO_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "videos")
CheckerConfig = [
"duration",
"video_fps",
"audio_sample_rate",
# We find for some videos (e.g. HMDB51 videos), the decoded audio frames and pts are
# slightly different between TorchVision decoder and PyAv decoder. So omit it during check
"check_aframes",
"check_aframe_pts",
]
GroundTruth = collections.namedtuple("GroundTruth", " ".join(CheckerConfig))
all_check_config = GroundTruth(
duration=0,
video_fps=0,
audio_sample_rate=0,
check_aframes=True,
check_aframe_pts=True,
)
test_videos = {
"RATRACE_wave_f_nm_np1_fr_goo_37.avi": GroundTruth(
duration=2.0,
video_fps=30.0,
audio_sample_rate=None,
check_aframes=True,
check_aframe_pts=True,
),
"SchoolRulesHowTheyHelpUs_wave_f_nm_np1_ba_med_0.avi": GroundTruth(
duration=2.0,
video_fps=30.0,
audio_sample_rate=None,
check_aframes=True,
check_aframe_pts=True,
),
"TrumanShow_wave_f_nm_np1_fr_med_26.avi": GroundTruth(
duration=2.0,
video_fps=30.0,
audio_sample_rate=None,
check_aframes=True,
check_aframe_pts=True,
),
"v_SoccerJuggling_g23_c01.avi": GroundTruth(
duration=8.0,
video_fps=29.97,
audio_sample_rate=None,
check_aframes=True,
check_aframe_pts=True,
),
"v_SoccerJuggling_g24_c01.avi": GroundTruth(
duration=8.0,
video_fps=29.97,
audio_sample_rate=None,
check_aframes=True,
check_aframe_pts=True,
),
"R6llTwEh07w.mp4": GroundTruth(
duration=10.0,
video_fps=30.0,
audio_sample_rate=44100,
# PyAv miss one audio frame at the beginning (pts=0)
check_aframes=False,
check_aframe_pts=False,
),
"SOX5yA1l24A.mp4": GroundTruth(
duration=11.0,
video_fps=29.97,
audio_sample_rate=48000,
# PyAv miss one audio frame at the beginning (pts=0)
check_aframes=False,
check_aframe_pts=False,
),
"WUzgd7C1pWA.mp4": GroundTruth(
duration=11.0,
video_fps=29.97,
audio_sample_rate=48000,
# PyAv miss one audio frame at the beginning (pts=0)
check_aframes=False,
check_aframe_pts=False,
),
}
DecoderResult = collections.namedtuple(
"DecoderResult", "vframes vframe_pts vtimebase aframes aframe_pts atimebase"
)
"""av_seek_frame is imprecise so seek to a timestamp earlier by a margin
The unit of margin is second"""
seek_frame_margin = 0.25
def _read_from_stream(
container, start_pts, end_pts, stream, stream_name, buffer_size=4
):
"""
Args:
container: pyav container
start_pts/end_pts: the starting/ending Presentation TimeStamp where
frames are read
stream: pyav stream
stream_name: a dictionary of streams. For example, {"video": 0} means
video stream at stream index 0
buffer_size: pts of frames decoded by PyAv is not guaranteed to be in
ascending order. We need to decode more frames even when we meet end
pts
"""
# seeking in the stream is imprecise. Thus, seek to an ealier PTS by a margin
margin = 1
seek_offset = max(start_pts - margin, 0)
container.seek(seek_offset, any_frame=False, backward=True, stream=stream)
frames = {}
buffer_count = 0
for frame in container.decode(**stream_name):
if frame.pts < start_pts:
continue
if frame.pts <= end_pts:
frames[frame.pts] = frame
else:
buffer_count += 1
if buffer_count >= buffer_size:
break
result = [frames[pts] for pts in sorted(frames)]
return result
def _get_timebase_by_av_module(full_path):
container = av.open(full_path)
video_time_base = container.streams.video[0].time_base
if container.streams.audio:
audio_time_base = container.streams.audio[0].time_base
else:
audio_time_base = None
return video_time_base, audio_time_base
def _fraction_to_tensor(fraction):
ret = torch.zeros([2], dtype=torch.int32)
ret[0] = fraction.numerator
ret[1] = fraction.denominator
return ret
def _decode_frames_by_av_module(
full_path,
video_start_pts=0,
video_end_pts=None,
audio_start_pts=0,
audio_end_pts=None,
):
"""
Use PyAv to decode video frames. This provides a reference for our decoder
to compare the decoding results.
Input arguments:
full_path: video file path
video_start_pts/video_end_pts: the starting/ending Presentation TimeStamp where
frames are read
"""
if video_end_pts is None:
video_end_pts = float("inf")
if audio_end_pts is None:
audio_end_pts = float("inf")
container = av.open(full_path)
video_frames = []
vtimebase = torch.zeros([0], dtype=torch.int32)
if container.streams.video:
video_frames = _read_from_stream(
container,
video_start_pts,
video_end_pts,
container.streams.video[0],
{"video": 0},
)
# container.streams.video[0].average_rate is not a reliable estimator of
# frame rate. It can be wrong for certain codec, such as VP80
# So we do not return video fps here
vtimebase = _fraction_to_tensor(container.streams.video[0].time_base)
audio_frames = []
atimebase = torch.zeros([0], dtype=torch.int32)
if container.streams.audio:
audio_frames = _read_from_stream(
container,
audio_start_pts,
audio_end_pts,
container.streams.audio[0],
{"audio": 0},
)
atimebase = _fraction_to_tensor(container.streams.audio[0].time_base)
container.close()
vframes = [frame.to_rgb().to_ndarray() for frame in video_frames]
vframes = torch.as_tensor(np.stack(vframes))
vframe_pts = torch.tensor([frame.pts for frame in video_frames], dtype=torch.int64)
aframes = [frame.to_ndarray() for frame in audio_frames]
if aframes:
aframes = np.transpose(np.concatenate(aframes, axis=1))
aframes = torch.as_tensor(aframes)
else:
aframes = torch.empty((1, 0), dtype=torch.float32)
aframe_pts = torch.tensor(
[audio_frame.pts for audio_frame in audio_frames], dtype=torch.int64
)
return DecoderResult(
vframes=vframes,
vframe_pts=vframe_pts,
vtimebase=vtimebase,
aframes=aframes,
aframe_pts=aframe_pts,
atimebase=atimebase,
)
def _pts_convert(pts, timebase_from, timebase_to, round_func=math.floor):
"""convert pts between different time bases
Args:
pts: presentation timestamp, float
timebase_from: original timebase. Fraction
timebase_to: new timebase. Fraction
round_func: rounding function.
"""
new_pts = Fraction(pts, 1) * timebase_from / timebase_to
return int(round_func(new_pts))
def _get_video_tensor(video_dir, video_file):
"""open a video file, and represent the video data by a PT tensor"""
full_path = os.path.join(video_dir, video_file)
assert os.path.exists(full_path), "File not found: %s" % full_path
with open(full_path, "rb") as fp:
video_tensor = torch.from_numpy(np.frombuffer(fp.read(), dtype=np.uint8))
return full_path, video_tensor
@unittest.skipIf(av is None, "PyAV unavailable")
@unittest.skipIf(_HAS_VIDEO_OPT is False, "Didn't compile with ffmpeg")
class TestVideoReader(unittest.TestCase):
def check_separate_decoding_result(self, tv_result, config):
"""check the decoding results from TorchVision decoder
"""
vframes, vframe_pts, vtimebase, vfps, vduration, \
aframes, aframe_pts, atimebase, asample_rate, aduration = (
tv_result
)
video_duration = vduration.item() * Fraction(
vtimebase[0].item(), vtimebase[1].item()
)
self.assertAlmostEqual(video_duration, config.duration, delta=0.5)
self.assertAlmostEqual(vfps.item(), config.video_fps, delta=0.5)
if asample_rate.numel() > 0:
self.assertEqual(asample_rate.item(), config.audio_sample_rate)
audio_duration = aduration.item() * Fraction(
atimebase[0].item(), atimebase[1].item()
)
self.assertAlmostEqual(audio_duration, config.duration, delta=0.5)
# check if pts of video frames are sorted in ascending order
for i in range(len(vframe_pts) - 1):
self.assertEqual(vframe_pts[i] < vframe_pts[i + 1], True)
if len(aframe_pts) > 1:
# check if pts of audio frames are sorted in ascending order
for i in range(len(aframe_pts) - 1):
self.assertEqual(aframe_pts[i] < aframe_pts[i + 1], True)
def check_probe_result(self, result, config):
vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
video_duration = vduration.item() * Fraction(
vtimebase[0].item(), vtimebase[1].item()
)
self.assertAlmostEqual(video_duration, config.duration, delta=0.5)
self.assertAlmostEqual(vfps.item(), config.video_fps, delta=0.5)
if asample_rate.numel() > 0:
self.assertEqual(asample_rate.item(), config.audio_sample_rate)
audio_duration = aduration.item() * Fraction(
atimebase[0].item(), atimebase[1].item()
)
self.assertAlmostEqual(audio_duration, config.duration, delta=0.5)
def check_meta_result(self, result, config):
self.assertAlmostEqual(result.video_duration, config.duration, delta=0.5)
self.assertAlmostEqual(result.video_fps, config.video_fps, delta=0.5)
if result.has_audio > 0:
self.assertEqual(result.audio_sample_rate, config.audio_sample_rate)
self.assertAlmostEqual(result.audio_duration, config.duration, delta=0.5)
def compare_decoding_result(self, tv_result, ref_result, config=all_check_config):
"""
Compare decoding results from two sources.
Args:
tv_result: decoding results from TorchVision decoder
ref_result: reference decoding results which can be from either PyAv
decoder or TorchVision decoder with getPtsOnly = 1
config: config of decoding results checker
"""
vframes, vframe_pts, vtimebase, _vfps, _vduration, \
aframes, aframe_pts, atimebase, _asample_rate, _aduration = (
tv_result
)
if isinstance(ref_result, list):
# the ref_result is from new video_reader decoder
ref_result = DecoderResult(
vframes=ref_result[0],
vframe_pts=ref_result[1],
vtimebase=ref_result[2],
aframes=ref_result[5],
aframe_pts=ref_result[6],
atimebase=ref_result[7],
)
if vframes.numel() > 0 and ref_result.vframes.numel() > 0:
mean_delta = torch.mean(
torch.abs(vframes.float() - ref_result.vframes.float())
)
self.assertAlmostEqual(mean_delta, 0, delta=8.0)
mean_delta = torch.mean(
torch.abs(vframe_pts.float() - ref_result.vframe_pts.float())
)
self.assertAlmostEqual(mean_delta, 0, delta=1.0)
is_same = torch.all(torch.eq(vtimebase, ref_result.vtimebase)).item()
self.assertEqual(is_same, True)
if (
config.check_aframes
and aframes.numel() > 0
and ref_result.aframes.numel() > 0
):
"""Audio stream is available and audio frame is required to return
from decoder"""
is_same = torch.all(torch.eq(aframes, ref_result.aframes)).item()
self.assertEqual(is_same, True)
if (
config.check_aframe_pts
and aframe_pts.numel() > 0
and ref_result.aframe_pts.numel() > 0
):
"""Audio stream is available"""
is_same = torch.all(torch.eq(aframe_pts, ref_result.aframe_pts)).item()
self.assertEqual(is_same, True)
is_same = torch.all(torch.eq(atimebase, ref_result.atimebase)).item()
self.assertEqual(is_same, True)
@unittest.skip(
"This stress test will iteratively decode the same set of videos."
"It helps to detect memory leak but it takes lots of time to run."
"By default, it is disabled"
)
def test_stress_test_read_video_from_file(self):
num_iter = 10000
# video related
width, height, min_dimension, max_dimension = 0, 0, 0, 0
video_start_pts, video_end_pts = 0, -1
video_timebase_num, video_timebase_den = 0, 1
# audio related
samples, channels = 0, 0
audio_start_pts, audio_end_pts = 0, -1
audio_timebase_num, audio_timebase_den = 0, 1
for _i in range(num_iter):
for test_video, _config in test_videos.items():
full_path = os.path.join(VIDEO_DIR, test_video)
# pass 1: decode all frames using new decoder
torch.ops.video_reader.read_video_from_file(
full_path,
seek_frame_margin,
0, # getPtsOnly
1, # readVideoStream
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
1, # readAudioStream
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
def test_read_video_from_file(self):
"""
Test the case when decoder starts with a video file to decode frames.
"""
# video related
width, height, min_dimension, max_dimension = 0, 0, 0, 0
video_start_pts, video_end_pts = 0, -1
video_timebase_num, video_timebase_den = 0, 1
# audio related
samples, channels = 0, 0
audio_start_pts, audio_end_pts = 0, -1
audio_timebase_num, audio_timebase_den = 0, 1
for test_video, config in test_videos.items():
full_path = os.path.join(VIDEO_DIR, test_video)
# pass 1: decode all frames using new decoder
tv_result = torch.ops.video_reader.read_video_from_file(
full_path,
seek_frame_margin,
0, # getPtsOnly
1, # readVideoStream
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
1, # readAudioStream
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
# pass 2: decode all frames using av
pyav_result = _decode_frames_by_av_module(full_path)
# check results from TorchVision decoder
self.check_separate_decoding_result(tv_result, config)
# compare decoding results
self.compare_decoding_result(tv_result, pyav_result, config)
def test_read_video_from_file_read_single_stream_only(self):
"""
Test the case when decoder starts with a video file to decode frames, and
only reads video stream and ignores audio stream
"""
# video related
width, height, min_dimension, max_dimension = 0, 0, 0, 0
video_start_pts, video_end_pts = 0, -1
video_timebase_num, video_timebase_den = 0, 1
# audio related
samples, channels = 0, 0
audio_start_pts, audio_end_pts = 0, -1
audio_timebase_num, audio_timebase_den = 0, 1
for test_video, config in test_videos.items():
full_path = os.path.join(VIDEO_DIR, test_video)
for readVideoStream, readAudioStream in [(1, 0), (0, 1)]:
# decode all frames using new decoder
tv_result = torch.ops.video_reader.read_video_from_file(
full_path,
seek_frame_margin,
0, # getPtsOnly
readVideoStream,
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
readAudioStream,
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
vframes, vframe_pts, vtimebase, vfps, vduration, \
aframes, aframe_pts, atimebase, asample_rate, aduration = (
tv_result
)
self.assertEqual(vframes.numel() > 0, readVideoStream)
self.assertEqual(vframe_pts.numel() > 0, readVideoStream)
self.assertEqual(vtimebase.numel() > 0, readVideoStream)
self.assertEqual(vfps.numel() > 0, readVideoStream)
expect_audio_data = (
readAudioStream == 1 and config.audio_sample_rate is not None
)
self.assertEqual(aframes.numel() > 0, expect_audio_data)
self.assertEqual(aframe_pts.numel() > 0, expect_audio_data)
self.assertEqual(atimebase.numel() > 0, expect_audio_data)
self.assertEqual(asample_rate.numel() > 0, expect_audio_data)
def test_read_video_from_file_rescale_min_dimension(self):
"""
Test the case when decoder starts with a video file to decode frames, and
video min dimension between height and width is set.
"""
# video related
width, height, min_dimension, max_dimension = 0, 0, 128, 0
video_start_pts, video_end_pts = 0, -1
video_timebase_num, video_timebase_den = 0, 1
# audio related
samples, channels = 0, 0
audio_start_pts, audio_end_pts = 0, -1
audio_timebase_num, audio_timebase_den = 0, 1
for test_video, _config in test_videos.items():
full_path = os.path.join(VIDEO_DIR, test_video)
tv_result = torch.ops.video_reader.read_video_from_file(
full_path,
seek_frame_margin,
0, # getPtsOnly
1, # readVideoStream
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
1, # readAudioStream
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
self.assertEqual(
min_dimension, min(tv_result[0].size(1), tv_result[0].size(2))
)
def test_read_video_from_file_rescale_max_dimension(self):
"""
Test the case when decoder starts with a video file to decode frames, and
video min dimension between height and width is set.
"""
# video related
width, height, min_dimension, max_dimension = 0, 0, 0, 85
video_start_pts, video_end_pts = 0, -1
video_timebase_num, video_timebase_den = 0, 1
# audio related
samples, channels = 0, 0
audio_start_pts, audio_end_pts = 0, -1
audio_timebase_num, audio_timebase_den = 0, 1
for test_video, _config in test_videos.items():
full_path = os.path.join(VIDEO_DIR, test_video)
tv_result = torch.ops.video_reader.read_video_from_file(
full_path,
seek_frame_margin,
0, # getPtsOnly
1, # readVideoStream
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
1, # readAudioStream
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
self.assertEqual(
max_dimension, max(tv_result[0].size(1), tv_result[0].size(2))
)
def test_read_video_from_file_rescale_both_min_max_dimension(self):
"""
Test the case when decoder starts with a video file to decode frames, and
video min dimension between height and width is set.
"""
# video related
width, height, min_dimension, max_dimension = 0, 0, 64, 85
video_start_pts, video_end_pts = 0, -1
video_timebase_num, video_timebase_den = 0, 1
# audio related
samples, channels = 0, 0
audio_start_pts, audio_end_pts = 0, -1
audio_timebase_num, audio_timebase_den = 0, 1
for test_video, _config in test_videos.items():
full_path = os.path.join(VIDEO_DIR, test_video)
tv_result = torch.ops.video_reader.read_video_from_file(
full_path,
seek_frame_margin,
0, # getPtsOnly
1, # readVideoStream
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
1, # readAudioStream
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
self.assertEqual(
min_dimension, min(tv_result[0].size(1), tv_result[0].size(2))
)
self.assertEqual(
max_dimension, max(tv_result[0].size(1), tv_result[0].size(2))
)
def test_read_video_from_file_rescale_width(self):
"""
Test the case when decoder starts with a video file to decode frames, and
video width is set.
"""
# video related
width, height, min_dimension, max_dimension = 256, 0, 0, 0
video_start_pts, video_end_pts = 0, -1
video_timebase_num, video_timebase_den = 0, 1
# audio related
samples, channels = 0, 0
audio_start_pts, audio_end_pts = 0, -1
audio_timebase_num, audio_timebase_den = 0, 1
for test_video, _config in test_videos.items():
full_path = os.path.join(VIDEO_DIR, test_video)
tv_result = torch.ops.video_reader.read_video_from_file(
full_path,
seek_frame_margin,
0, # getPtsOnly
1, # readVideoStream
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
1, # readAudioStream
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
self.assertEqual(tv_result[0].size(2), width)
def test_read_video_from_file_rescale_height(self):
"""
Test the case when decoder starts with a video file to decode frames, and
video height is set.
"""
# video related
width, height, min_dimension, max_dimension = 0, 224, 0, 0
video_start_pts, video_end_pts = 0, -1
video_timebase_num, video_timebase_den = 0, 1
# audio related
samples, channels = 0, 0
audio_start_pts, audio_end_pts = 0, -1
audio_timebase_num, audio_timebase_den = 0, 1
for test_video, _config in test_videos.items():
full_path = os.path.join(VIDEO_DIR, test_video)
tv_result = torch.ops.video_reader.read_video_from_file(
full_path,
seek_frame_margin,
0, # getPtsOnly
1, # readVideoStream
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
1, # readAudioStream
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
self.assertEqual(tv_result[0].size(1), height)
def test_read_video_from_file_rescale_width_and_height(self):
"""
Test the case when decoder starts with a video file to decode frames, and
both video height and width are set.
"""
# video related
width, height, min_dimension, max_dimension = 320, 240, 0, 0
video_start_pts, video_end_pts = 0, -1
video_timebase_num, video_timebase_den = 0, 1
# audio related
samples, channels = 0, 0
audio_start_pts, audio_end_pts = 0, -1
audio_timebase_num, audio_timebase_den = 0, 1
for test_video, _config in test_videos.items():
full_path = os.path.join(VIDEO_DIR, test_video)
tv_result = torch.ops.video_reader.read_video_from_file(
full_path,
seek_frame_margin,
0, # getPtsOnly
1, # readVideoStream
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
1, # readAudioStream
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
self.assertEqual(tv_result[0].size(1), height)
self.assertEqual(tv_result[0].size(2), width)
def test_read_video_from_file_audio_resampling(self):
"""
Test the case when decoder starts with a video file to decode frames, and
audio waveform are resampled
"""
for samples in [9600, 96000]: # downsampling # upsampling
# video related
width, height, min_dimension, max_dimension = 0, 0, 0, 0
video_start_pts, video_end_pts = 0, -1
video_timebase_num, video_timebase_den = 0, 1
# audio related
channels = 0
audio_start_pts, audio_end_pts = 0, -1
audio_timebase_num, audio_timebase_den = 0, 1
for test_video, _config in test_videos.items():
full_path = os.path.join(VIDEO_DIR, test_video)
tv_result = torch.ops.video_reader.read_video_from_file(
full_path,
seek_frame_margin,
0, # getPtsOnly
1, # readVideoStream
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
1, # readAudioStream
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
vframes, vframe_pts, vtimebase, vfps, vduration, \
aframes, aframe_pts, atimebase, asample_rate, aduration = (
tv_result
)
if aframes.numel() > 0:
self.assertEqual(samples, asample_rate.item())
self.assertEqual(1, aframes.size(1))
# when audio stream is found
duration = (
float(aframe_pts[-1])
* float(atimebase[0])
/ float(atimebase[1])
)
self.assertAlmostEqual(
aframes.size(0),
int(duration * asample_rate.item()),
delta=0.1 * asample_rate.item(),
)
def test_compare_read_video_from_memory_and_file(self):
"""
Test the case when video is already in memory, and decoder reads data in memory
"""
# video related
width, height, min_dimension, max_dimension = 0, 0, 0, 0
video_start_pts, video_end_pts = 0, -1
video_timebase_num, video_timebase_den = 0, 1
# audio related
samples, channels = 0, 0
audio_start_pts, audio_end_pts = 0, -1
audio_timebase_num, audio_timebase_den = 0, 1
for test_video, config in test_videos.items():
full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
# pass 1: decode all frames using cpp decoder
tv_result_memory = torch.ops.video_reader.read_video_from_memory(
video_tensor,
seek_frame_margin,
0, # getPtsOnly
1, # readVideoStream
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
1, # readAudioStream
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
self.check_separate_decoding_result(tv_result_memory, config)
# pass 2: decode all frames from file
tv_result_file = torch.ops.video_reader.read_video_from_file(
full_path,
seek_frame_margin,
0, # getPtsOnly
1, # readVideoStream
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
1, # readAudioStream
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
self.check_separate_decoding_result(tv_result_file, config)
# finally, compare results decoded from memory and file
self.compare_decoding_result(tv_result_memory, tv_result_file)
def test_read_video_from_memory(self):
"""
Test the case when video is already in memory, and decoder reads data in memory
"""
# video related
width, height, min_dimension, max_dimension = 0, 0, 0, 0
video_start_pts, video_end_pts = 0, -1
video_timebase_num, video_timebase_den = 0, 1
# audio related
samples, channels = 0, 0
audio_start_pts, audio_end_pts = 0, -1
audio_timebase_num, audio_timebase_den = 0, 1
for test_video, config in test_videos.items():
full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
# pass 1: decode all frames using cpp decoder
tv_result = torch.ops.video_reader.read_video_from_memory(
video_tensor,
seek_frame_margin,
0, # getPtsOnly
1, # readVideoStream
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
1, # readAudioStream
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
# pass 2: decode all frames using av
pyav_result = _decode_frames_by_av_module(full_path)
self.check_separate_decoding_result(tv_result, config)
self.compare_decoding_result(tv_result, pyav_result, config)
def test_read_video_from_memory_get_pts_only(self):
"""
Test the case when video is already in memory, and decoder reads data in memory.
Compare frame pts between decoding for pts only and full decoding
for both pts and frame data
"""
# video related
width, height, min_dimension, max_dimension = 0, 0, 0, 0
video_start_pts, video_end_pts = 0, -1
video_timebase_num, video_timebase_den = 0, 1
# audio related
samples, channels = 0, 0
audio_start_pts, audio_end_pts = 0, -1
audio_timebase_num, audio_timebase_den = 0, 1
for test_video, config in test_videos.items():
full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
# pass 1: decode all frames using cpp decoder
tv_result = torch.ops.video_reader.read_video_from_memory(
video_tensor,
seek_frame_margin,
0, # getPtsOnly
1, # readVideoStream
width,
height,
min_dimension,
max_dimension,
video_start_pts,
video_end_pts,
video_timebase_num,
video_timebase_den,
1, # readAudioStream
samples,
channels,
audio_start_pts,
audio_end_pts,
audio_timebase_num,
audio_timebase_den,
)
self.assertAlmostEqual(config.video_fps, tv_result[3].item(), delta=0.01)
# pass 2: decode all frames to get PTS only using cpp decoder
tv_result_pts_only = torch.ops.video_reader.read_video_from_memory(
video_tensor,
seek_frame_margin,
1, # getPtsOnly
1, # readVideoStream
width,
height,