forked from kakaobrain/karlo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
86 lines (70 loc) · 2.38 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# ------------------------------------------------------------------------------------
# Karlo-v1.0.alpha
# Copyright (c) 2022 KakaoBrain. All Rights Reserved.
# ------------------------------------------------------------------------------------
import os
import argparse
import logging
import time
from datetime import datetime
import torch
from PIL import Image
from karlo.sampler.t2i import T2ISampler
from karlo.utils.util import set_seed
def default_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--root-dir", type=str, required=True, help="path for model checkpoints"
)
parser.add_argument("--max-bsz", type=int, default=1, help="#images to generate")
parser.add_argument(
"--output-dir",
type=str,
default="outputs",
help="output path for generated images",
)
parser.add_argument(
"--sampling-type",
type=str,
default="fast",
choices=("fast", "default"),
)
parser.add_argument(
"--prompt", type=str, default="A photo of a baby puppy waiting for her mom."
)
parser.add_argument("--seed", type=int, default=0)
return parser
if __name__ == "__main__":
parser = default_parser()
args = parser.parse_args()
set_seed(args.seed)
logging.getLogger().setLevel(logging.INFO)
save_dir = os.path.join(args.output_dir, datetime.now().strftime("%d%m%Y_%H%M%S"))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
model = T2ISampler.from_pretrained(
root_dir=args.root_dir,
clip_model_path="ViT-L-14.pt",
clip_stat_path="ViT-L-14_stats.th",
sampling_type=args.sampling_type,
)
for i in range(5):
t1 = time.time()
images = iter(
model(
prompt=args.prompt,
bsz=args.max_bsz,
progressive_mode="final",
)
).__next__()
# NCHW, [0, 1], float32 -> NHWC, [0, 255], uint8
images = (
torch.permute(images * 255.0, [0, 2, 3, 1]).type(torch.uint8).cpu().numpy()
)
t2 = time.time()
execution_time = t2 - t1
logging.info(f"Iteration {i} -- {execution_time:.6f}secs")
# Select the first one
image = Image.fromarray(images[0])
image_name = "_".join(args.prompt.split(" "))
image.save(f"{save_dir}/{image_name}_{i:02d}.jpg")