forked from MarcCoru/MTLCC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataset.py
328 lines (236 loc) · 12 KB
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from S2parser import S2parser
import tensorflow as tf
import os
import configparser
import csv
class Dataset():
""" A wrapper class around Tensorflow Dataset api handling data normalization and augmentation """
def __init__(self, datadir, verbose=False, temporal_samples=None, section="dataset", augment=False):
self.verbose = verbose
self.augment = augment
# parser reads serialized tfrecords file and creates a feature object
parser = S2parser()
self.parsing_function = parser.parse_example
self.temp_samples = temporal_samples
self.section = section
# if datadir is None:
# dataroot=os.environ["datadir"]
# else:
dataroot = datadir
# csv list of geotransforms of each tile: tileid, xmin, xres, 0, ymax, 0, -yres, srid
# use querygeotransform.py or querygeotransforms.sh to generate csv
# fills dictionary:
# geotransforms[<tileid>] = (xmin, xres, 0, ymax, 0, -yres)
# srid[<tileid>] = srid
self.geotransforms = dict()
# https://en.wikipedia.org/wiki/Spatial_reference_system#Identifier
self.srids = dict()
with open(os.path.join(dataroot, "geotransforms.csv"),'r') as f:
reader = csv.reader(f, delimiter=',')
for row in reader:
self.geotransforms[int(row[0])] = (
float(row[1]), int(row[2]), int(row[3]), float(row[4]), int(row[5]), int(row[6]))
self.srids[int(row[0])] = int(row[7])
classes = os.path.join(dataroot,"classes.txt")
with open(classes, 'r') as f:
classes = f.readlines()
self.ids=list()
self.classes=list()
for row in classes:
row=row.replace("\n","")
if '|' in row:
id,cl = row.split('|')
self.ids.append(int(id))
self.classes.append(cl)
## create a lookup table to map labelids to dimension ids
# map data ids [0, 1, 2, 3, 5, 6, 8, 9, 12, 13, 15, 16, 17, 19, 22, 23, 24, 25, 26]
labids = tf.constant(self.ids, dtype=tf.int64)
# to dimensions [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
dimids = tf.constant(range(len(self.ids)), dtype=tf.int64)
self.id_lookup_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(labids, dimids),
default_value=-1)
self.inverse_id_lookup_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(dimids,labids),
default_value=-1)
#self.classes = [cl.replace("\n","") for cl in f.readlines()]
cfgpath = os.path.join(dataroot, "dataset.ini")
# load dataset configs
datacfg = configparser.ConfigParser()
datacfg.read(cfgpath)
cfg = datacfg[section]
self.tileidfolder = os.path.join(dataroot, "tileids")
self.datadir = os.path.join(dataroot, cfg["datadir"])
assert 'pix10' in cfg.keys()
assert 'nobs' in cfg.keys()
assert 'nbands10' in cfg.keys()
assert 'nbands20' in cfg.keys()
assert 'nbands60' in cfg.keys()
self.tiletable=cfg["tiletable"]
self.nobs = int(cfg["nobs"])
self.expected_shapes = self.calc_expected_shapes(int(cfg["pix10"]),
int(cfg["nobs"]),
int(cfg["nbands10"]),
int(cfg["nbands20"]),
int(cfg["nbands60"])
)
# expected datatypes as read from disk
self.expected_datatypes = (tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.int64)
def calc_expected_shapes(self, pix10, nobs, bands10, bands20, bands60):
pix20 = pix10 / 2;
pix60 = pix10 / 6;
x10shape = (nobs, pix10, pix10, bands10)
x20shape = (nobs, pix20, pix20, bands20)
x60shape = (nobs, pix60, pix60, bands60)
doyshape = (nobs,)
yearshape = (nobs,)
labelshape = (nobs, pix10, pix10)
return [x10shape, x20shape, x60shape, doyshape, yearshape, labelshape]
def transform_labels(self,feature):
"""
1. take only first labelmap, as labels are not supposed to change
2. perform label lookup as stored label ids might be not sequential labelid:[0,3,4] -> dimid:[0,1,2]
"""
x10, x20, x60, doy, year, labels = feature
# take first label time [46,24,24] -> [24,24]
# labels are not supposed to change over the time series
#labels = labels[0]
labels = self.id_lookup_table.lookup(labels)
return x10, x20, x60, doy, year, labels
def normalize(self, feature):
x10, x20, x60, doy, year, labels = feature
x10 = tf.scalar_mul(1e-4, tf.cast(x10, tf.float32))
x20 = tf.scalar_mul(1e-4, tf.cast(x20, tf.float32))
x60 = tf.scalar_mul(1e-4, tf.cast(x60, tf.float32))
doy = tf.cast(doy, tf.float32) / 365
# year = (2016 - tf.cast(year, tf.float32)) / 2017
year = tf.cast(year, tf.float32) - 2016
return x10, x20, x60, doy, year, labels
def augment(self, feature):
x10, x20, x60, doy, year, labels = feature
## Flip UD
# roll the dice
condition = tf.less(tf.random_uniform(shape=[], minval=0., maxval=1., dtype=tf.float32), 0.5)
# flip
x10 = tf.cond(condition, lambda: tf.reverse(x10, axis=[1]), lambda: x10)
x20 = tf.cond(condition, lambda: tf.reverse(x20, axis=[1]), lambda: x20)
x60 = tf.cond(condition, lambda: tf.reverse(x60, axis=[1]), lambda: x60)
labels = tf.cond(condition, lambda: tf.reverse(labels, axis=[1]), lambda: labels)
## Flip LR
# roll the dice
condition = tf.less(tf.random_uniform(shape=[], minval=0., maxval=1., dtype=tf.float32), 0.5)
# flip
x10 = tf.cond(condition, lambda: tf.reverse(x10, axis=[2]), lambda: x10)
x20 = tf.cond(condition, lambda: tf.reverse(x20, axis=[2]), lambda: x20)
x60 = tf.cond(condition, lambda: tf.reverse(x60, axis=[2]), lambda: x60)
labels = tf.cond(condition, lambda: tf.reverse(labels, axis=[2]), lambda: labels)
return x10, x20, x60, doy, year, labels
def temporal_sample(self, feature):
""" randomy choose <self.temp_samples> elements from temporal sequence """
n = self.temp_samples
# skip if not specified
if n is None:
return feature
x10, x20, x60, doy, year, labels = feature
# data format 1, 2, 1, 2, -1,-1,-1
# sequence lengths indexes are negative values.
# sequence_lengths = tf.reduce_sum(tf.cast(x10[:, :, 0, 0, 0] > 0, tf.int32), axis=1)
# tf.sequence_mask(sequence_lengths, n_obs)
# max_obs = tf.shape(x10)[1]
max_obs = self.nobs
shuffled_range = tf.random_shuffle(tf.range(max_obs))[0:n]
idxs = -tf.nn.top_k(-shuffled_range, k=n).values
x10 = tf.gather(x10, idxs)
x20 = tf.gather(x20, idxs)
x60 = tf.gather(x60, idxs)
doy = tf.gather(doy, idxs)
year = tf.gather(year, idxs)
return x10, x20, x60, doy, year, labels
def get_ids(self, partition, fold=0):
def readids(path):
with open(path, 'r') as f:
lines = f.readlines()
return [int(l.replace("\n", "")) for l in lines]
traintest = "{partition}_fold{fold}.tileids"
eval = "{partition}.tileids"
if partition == 'train':
# e.g. train240_fold0.tileids
path = os.path.join(self.tileidfolder, traintest.format(partition=partition, fold=fold))
return readids(path)
elif partition == 'test':
# e.g. test240_fold0.tileids
path = os.path.join(self.tileidfolder, traintest.format(partition=partition, fold=fold))
return readids(path)
elif partition == 'eval':
# e.g. eval240.tileids
path = os.path.join(self.tileidfolder, eval.format(partition=partition))
return readids(path)
else:
raise ValueError("please provide valid partition (train|test|eval)")
def create_tf_dataset(self, partition, fold, batchsize, shuffle, prefetch_batches=None, num_batches=-1, threads=8,
drop_remainder=False, overwrite_ids=None):
# set of ids as present in database of given partition (train/test/eval) and fold (0-9)
allids = self.get_ids(partition=partition, fold=fold)
# set of ids present in local folder (e.g. 1.tfrecord)
tiles = os.listdir(self.datadir)
if tiles[0].endswith(".gz"):
compression = "GZIP"
ext = ".tfrecord.gz"
else:
compression = ""
ext = ".tfrecord"
downloaded_ids = [int(t.replace(".gz", "").replace(".tfrecord", "")) for t in tiles]
# intersection of available ids and partition ods
if overwrite_ids is None:
ids = list(set(downloaded_ids).intersection(allids))
else:
print "overwriting data ids! due to manual input"
ids = overwrite_ids
filenames = [os.path.join(self.datadir, str(id) + ext) for id in ids]
if self.verbose:
print "dataset: {}, partition: {}, fold:{} {}/{} tiles downloaded ({:.2f} %)".format(self.section, partition, fold, len(ids), len(allids),
len(ids) / float(len(allids)) * 100)
def mapping_function(serialized_feature):
# read data from .tfrecords
feature = self.parsing_function(serialized_example=serialized_feature)
# sample n times out of the timeseries
feature = self.temporal_sample(feature)
# perform data normalization [0,1000] -> [0,1]
feature = self.normalize(feature)
# perform data augmentation
if self.augment: feature = self.augment(feature)
# replace potentially non sequential labelids with sequential dimension ids
feature = self.transform_labels(feature)
return feature
if num_batches > 0:
filenames = filenames[0:num_batches * batchsize]
# shuffle sequence of filenames
if shuffle:
filenames = tf.random_shuffle(filenames)
dataset = tf.data.TFRecordDataset(filenames, compression_type=compression)
dataset = dataset.map(mapping_function, num_parallel_calls=threads)
# repeat forever until externally stopped
dataset = dataset.repeat()
# Don't trust buffer size -> manual shuffle beforehand
# if shuffle:
# dataset = dataset.shuffle(buffer_size=int(min_after_dequeue))
if drop_remainder:
dataset = dataset.apply(tf.contrib.data.batch_and_drop_remainder(int(batchsize)))
else:
dataset = dataset.batch(int(batchsize))
if prefetch_batches is not None:
dataset = dataset.prefetch(prefetch_batches)
# assign output_shape to dataset
# modelshapes are expected shapes of the data stacked as batch
output_shape = []
for shape in self.expected_shapes:
output_shape.append(tf.TensorShape((batchsize,) + shape))
return dataset, output_shape, self.expected_datatypes, filenames
def main():
dataset = Dataset(datadir="/media/data/marc/tfrecords/fields/L1C/480", verbose=True, temporal_samples=30,section="2016")
training_dataset, output_shapes, output_datatypes, fm_train = dataset.create_tf_dataset("train", 0, 1, 5, True, 32)
iterator = training_dataset.make_initializable_iterator()
with tf.Session() as sess:
sess.run([iterator.initializer, tf.tables_initializer()])
x10, x20, x60, doy, year, labels = sess.run(iterator.get_next())
print x10.shape
if __name__ == "__main__":
main()