-
Notifications
You must be signed in to change notification settings - Fork 1
/
references.bib
135 lines (125 loc) · 5.61 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
@misc{Burdi:2023climrr,
title={The Climate Risk & Resilience Portal (ClimRR) Metadata and Data Dictionary},
author = "Burdi, C. and Branham, J., Wall. T",
year = "2023",
note = {Available at \url{https://anl.app.box.com/s/hmkkgkrkzxxocfe9kpgrzk2gfc4gizp8/file/1055145398460}},
url = {https://dub.sh/ClimRR-Metadata},
}
@misc{wittig2023progress,
title={Progress on $(g-2)_\mu$ from Lattice QCD},
author={Hartmut Wittig},
year={2023},
eprint={2306.04165},
archivePrefix={arXiv},
primaryClass={hep-ph}
}
@article{Duane:1987de,
author = "Duane, S. and Kennedy, A. D. and Pendleton, B. J. and Roweth, D.",
title = "{Hybrid Monte Carlo}",
doi = "10.1016/0370-2693(87)91197-X",
journal = "Phys. Lett. B",
volume = "195",
pages = "216--222",
year = "1987"
}
@article{Shanahan:2022ifi,
author = "Shanahan, Phiala and others",
title = "{Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning}",
eprint = "2209.07559",
archivePrefix = "arXiv",
primaryClass = "physics.comp-ph",
reportNumber = "FERMILAB-CONF-22-719-ND-PPD-QIS-SCD",
month = "9",
year = "2022"
}
@inproceedings{Boyda:2022nmh,
author = "Boyda, Denis and others",
title = "{Applications of Machine Learning to Lattice Quantum Field Theory}",
booktitle = "{Snowmass 2021}",
eprint = "2202.05838",
archivePrefix = "arXiv",
primaryClass = "hep-lat",
reportNumber = "MIT-CTP/5405",
month = "2",
year = "2022"
}
@article{Foreman:2021ljl,
author = "Foreman, Sam and Izubuchi, Taku and Jin, Luchang and Jin, Xiao-Yong and Osborn, James C. and Tomiya, Akio",
title = "{HMC with Normalizing Flows}",
eprint = "2112.01586",
archivePrefix = "arXiv",
primaryClass = "cs.LG",
doi = "10.22323/1.396.0073",
journal = "PoS",
volume = "LATTICE2021",
pages = "073",
year = "2022"
}
@article{Foreman:2021rhs,
author = "Foreman, Sam and Jin, Xiao-Yong and Osborn, James C.",
title = "{LeapfrogLayers: A Trainable Framework for Effective Topological Sampling}",
eprint = "2112.01582",
archivePrefix = "arXiv",
primaryClass = "hep-lat",
doi = "10.22323/1.396.0508",
journal = "PoS",
volume = "LATTICE2021",
pages = "508",
year = "2022"
}
@inproceedings{Foreman:2021ixr,
author = "Foreman, Sam and Jin, Xiao-Yong and Osborn, James C.",
title = "{Deep Learning Hamiltonian Monte Carlo}",
booktitle = "{9th International Conference on Learning Representations}",
eprint = "2105.03418",
archivePrefix = "arXiv",
primaryClass = "hep-lat",
month = "5",
year = "2021"
}
@online{foreman2023climate,
author = {Foreman, Sam},
title = {Energy {Justice} {Analysis} of {Climate} {Data} with
{ClimRR}},
date = {2023-08-07},
url = {https://saforem2.github.io/climate-analysis},
langid = {en}
}
@misc{foreman2023-l2hmcqcd,
author = {Foreman, Sam},
date = {2023-08-19},
url = {https://saforem2.github.io/l2hmc-qcd},
langid = {en}
}
@misc{foreman2021deep,
title={Deep Learning Hamiltonian Monte Carlo},
author={Sam Foreman and Xiao-Yong Jin and James C. Osborn},
year={2021},
eprint={2105.03418},
archivePrefix={arXiv},
primaryClass={hep-lat}
}
@inproceedings{foreman2023mlmc,
title = {MLMC: Machine Learning Monte Carlo for Lattice Gauge Theory},
author = {Foreman, Sam and Jin, Xiao-Yong and Osborn, James},
booktitle = {40th International Symposium on Lattice Field Theory (Lattice 2023) (Batavia, IL, United States, 07/31/2023 - 08/04/2023)},
year = {},
editor = {},
volume = {},
number = {},
series = {},
pages = {},
address = {},
month = {},
publisher = {},
note = {, , },
crossref = {}
}
@misc{song2023deepspeed4science,
title={DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies},
author={Shuaiwen Leon Song and Bonnie Kruft and Minjia Zhang and Conglong Li and Shiyang Chen and Chengming Zhang and Masahiro Tanaka and Xiaoxia Wu and Jeff Rasley and Ammar Ahmad Awan and Connor Holmes and Martin Cai and Adam Ghanem and Zhongzhu Zhou and Yuxiong He and Pete Luferenko and Divya Kumar and Jonathan Weyn and Ruixiong Zhang and Sylwester Klocek and Volodymyr Vragov and Mohammed AlQuraishi and Gustaf Ahdritz and Christina Floristean and Cristina Negri and Rao Kotamarthi and Venkatram Vishwanath and Arvind Ramanathan and Sam Foreman and Kyle Hippe and Troy Arcomano and Romit Maulik and Maxim Zvyagin and Alexander Brace and Bin Zhang and Cindy Orozco Bohorquez and Austin Clyde and Bharat Kale and Danilo Perez-Rivera and Heng Ma and Carla M. Mann and Michael Irvin and J. Gregory Pauloski and Logan Ward and Valerie Hayot and Murali Emani and Zhen Xie and Diangen Lin and Maulik Shukla and Ian Foster and James J. Davis and Michael E. Papka and Thomas Brettin and Prasanna Balaprakash and Gina Tourassi and John Gounley and Heidi Hanson and Thomas E Potok and Massimiliano Lupo Pasini and Kate Evans and Dan Lu and Dalton Lunga and Junqi Yin and Sajal Dash and Feiyi Wang and Mallikarjun Shankar and Isaac Lyngaas and Xiao Wang and Guojing Cong and Pei Zhang and Ming Fan and Siyan Liu and Adolfy Hoisie and Shinjae Yoo and Yihui Ren and William Tang and Kyle Felker and Alexey Svyatkovskiy and Hang Liu and Ashwin Aji and Angela Dalton and Michael Schulte and Karl Schulz and Yuntian Deng and Weili Nie and Josh Romero and Christian Dallago and Arash Vahdat and Chaowei Xiao and Thomas Gibbs and Anima Anandkumar and Rick Stevens},
year={2023},
eprint={2310.04610},
archivePrefix={arXiv},
primaryClass={cs.AI}
}