|
9 | 9 | Jordan algebra |
10 | 10 | """ |
11 | 11 |
|
12 | | -#***************************************************************************** |
| 12 | +# *************************************************************************** |
13 | 13 | # Copyright (C) 2014, 2023 Travis Scrimshaw <tscrim at ucdavis.edu> |
14 | 14 | # |
15 | 15 | # Distributed under the terms of the GNU General Public License (GPL) |
16 | 16 | # https://www.gnu.org/licenses/ |
17 | | -#***************************************************************************** |
| 17 | +# *************************************************************************** |
18 | 18 |
|
19 | 19 | from sage.structure.parent import Parent |
20 | 20 | from sage.structure.unique_representation import UniqueRepresentation |
@@ -209,7 +209,7 @@ def __classcall_private__(self, arg0, arg1=None, names=None): |
209 | 209 | if not arg1.is_symmetric(): |
210 | 210 | raise ValueError("the bilinear form is not symmetric") |
211 | 211 |
|
212 | | - arg1 = arg1.change_ring(arg0) # This makes a copy |
| 212 | + arg1 = arg1.change_ring(arg0) # This makes a copy |
213 | 213 | arg1.set_immutable() |
214 | 214 | return JordanAlgebraSymmetricBilinear(arg0, arg1, names=names) |
215 | 215 |
|
@@ -344,8 +344,6 @@ def gens(self) -> Family: |
344 | 344 | sage: F.<x,y,z> = FreeAlgebra(QQ) |
345 | 345 | sage: J = JordanAlgebra(F) |
346 | 346 | sage: J.gens() |
347 | | - Traceback (most recent call last): |
348 | | - ... |
349 | 347 | Lazy family (Term map(i))_{i in Free monoid on 3 generators (x, y, z)} |
350 | 348 | """ |
351 | 349 | return self.algebra_generators() |
@@ -975,7 +973,7 @@ def _mul_(self, other): |
975 | 973 | P = self.parent() |
976 | 974 | return self.__class__(P, |
977 | 975 | self._s * other._s |
978 | | - + (self._v * P._form * other._v.column())[0], |
| 976 | + + (self._v * P._form * other._v.column())[0], |
979 | 977 | other._s * self._v + self._s * other._v) |
980 | 978 |
|
981 | 979 | def _lmul_(self, other): |
@@ -1024,8 +1022,8 @@ def monomial_coefficients(self, copy=True): |
1024 | 1022 | {0: 1, 1: 2, 2: -1} |
1025 | 1023 | """ |
1026 | 1024 | d = {0: self._s} |
1027 | | - for i,c in enumerate(self._v): |
1028 | | - d[i+1] = c |
| 1025 | + for i, c in enumerate(self._v): |
| 1026 | + d[i + 1] = c |
1029 | 1027 | return d |
1030 | 1028 |
|
1031 | 1029 | def trace(self): |
@@ -1259,8 +1257,8 @@ def _test_multiplication_self_adjoint(self, **options): |
1259 | 1257 | [SD[3].conjugate(), SD[1], SD[5]], |
1260 | 1258 | [SD[4].conjugate(), SD[5].conjugate(), SD[2]]] |
1261 | 1259 | Y = [[OD[0], OD[3], OD[4]], |
1262 | | - [OD[3].conjugate(), OD[1], OD[5]], |
1263 | | - [OD[4].conjugate(), OD[5].conjugate(), OD[2]]] |
| 1260 | + [OD[3].conjugate(), OD[1], OD[5]], |
| 1261 | + [OD[4].conjugate(), OD[5].conjugate(), OD[2]]] |
1264 | 1262 | for r, c in data_pairs: |
1265 | 1263 | if r != c: |
1266 | 1264 | val = sum(X[r][i] * Y[i][c] + Y[r][i] * X[i][c] for i in range(3)) * self._half |
@@ -1685,8 +1683,8 @@ def _mul_(self, other): |
1685 | 1683 | [SD[3].conjugate(), SD[1], SD[5]], |
1686 | 1684 | [SD[4].conjugate(), SD[5].conjugate(), SD[2]]] |
1687 | 1685 | Y = [[OD[0], OD[3], OD[4]], |
1688 | | - [OD[3].conjugate(), OD[1], OD[5]], |
1689 | | - [OD[4].conjugate(), OD[5].conjugate(), OD[2]]] |
| 1686 | + [OD[3].conjugate(), OD[1], OD[5]], |
| 1687 | + [OD[4].conjugate(), OD[5].conjugate(), OD[2]]] |
1690 | 1688 | # we do a simplified multiplication for the diagonal entries since |
1691 | 1689 | # we have, e.g., \alpha * \alpha' + (x (x')^* + x' x^* + y (y')^* + y' y^*) / 2 |
1692 | 1690 | ret = [X[0][0] * Y[0][0] + (X[0][1] * Y[1][0]).real_part() + (X[0][2] * Y[2][0]).real_part(), |
|
0 commit comments