-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbiharmonic3d.py
325 lines (247 loc) · 10.1 KB
/
biharmonic3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# -*- coding: UTF-8 -*-
import os
import numpy as np
from time import time
setup_time1 = time()
from sympde.topology import Mapping,IdentityMapping
from psydac.api.postprocessing import PostProcessManager
from psydac.api.postprocessing import OutputManager
from sympy import sin, pi
from sympde.calculus import laplace, dot, grad,div
from sympde.topology import Cube, Mapping, Domain, Union
from sympde.topology import ScalarFunctionSpace, elements_of
from sympde.topology import NormalVector
from sympde.expr import BilinearForm, LinearForm, Norm, TerminalExpr
from sympde.expr import EssentialBC, find
from sympde.expr import integral
from psydac.api.discretization import discretize
from psydac.api.settings import PSYDAC_BACKEND_GPYCCEL, PSYDAC_DEFAULT_FOLDER
from sympy import lambdify
from mpi4py import MPI
def remove_folder(path):
os.system('rm -rf "%s" &' % path)
class SphericalMapping(Mapping):
"""
Represents a Spherical 3D Mapping object.
"""
_expressions = {'x': 'x1*sin(x2)*cos(x3)',
'y': 'x1*sin(x2)*sin(x3)',
'z': 'x1*cos(x2)'}
_ldim = 3
_pdim = 3
class PolarMapping(Mapping):
"""
Represents a Polar 3D Mapping object (Annulus).
Examples
"""
_expressions = {'x': 'c1 + (rmin*(1-x1)+rmax*x1)*cos(x2)',
'y': 'c2 + (rmin*(1-x1)+rmax*x1)*sin(x2)',
'z': 'x3'}
_ldim = 3
_pdim = 3
def construct_mapping(ncells, degree, comm):
from sympde.topology import Cube
from psydac.cad.geometry import Geometry
from psydac.fem.splines import SplineSpace
from psydac.fem.tensor import TensorFemSpace
from psydac.mapping.discrete import SplineMapping
from psydac.ddm.cart import DomainDecomposition
p1 , p2 , p3 = degree
nc1, nc2, nc3 = ncells
filename = 'mesh/quarter_annulus_3d_{}_{}.h5'.format(ncells[0], degree[0])
rank = 0 if comm is None else comm.rank
if rank == 0:
# Create the domain decomposition
domain_decomposition = DomainDecomposition(ncells=[nc1,nc2,nc3], periods=[False]*3)
default_params = dict( rmin=0.0, rmax=1.0, c1=0.0, c2=0.0)
r_in = 1.0
r_out = 2.0
lims1 = (r_in, r_out)
lims2 = (np.pi/4, 3*np.pi/4)
lims3 = (0, np.pi/2)
domain = Cube('Omega', bounds1=lims1, bounds2=lims2, bounds3=lims3)
# Create tensor spline space, distributed
V1 = SplineSpace( grid=np.linspace( *lims1, num=nc1+1 ), degree=p1, periodic=False )
V2 = SplineSpace( grid=np.linspace( *lims2, num=nc2+1 ), degree=p2, periodic=False )
V3 = SplineSpace( grid=np.linspace( *lims3, num=nc3+1 ), degree=p3, periodic=False )
space = TensorFemSpace( domain_decomposition, V1, V2, V3 )
map_analytic = SphericalMapping( 'M', dim=3 )
# Create spline mapping by interpolating analytical one
# Topological domain
domain = map_analytic(domain)
mapping = SplineMapping.from_mapping( space, map_analytic )
# Define ncells as a dict
mappings = {domain.name: mapping}
ncells = {domain.name:[len(space.breaks)-1 for space in mapping.space.spaces]}
periodic = {domain.name:[space.periodic for space in mapping.space.spaces]}
# create a geometry from a topological domain and the dict of mappings
geo = Geometry(domain=domain, ncells=ncells, periodic=periodic, mappings=mappings)
# Export to file
geo.export(filename)
#==============================================================================
def run_model(filename, ncells, degree, comm, backend):
backend['folder'] = "poisson_3d_psydac_{}_{}_{}_{}_{}".format(ncells[0], degree[0], comm.size, int(os.environ.get('OMP_NUM_THREADS', 1)), filename is None)
backend['flags'] = "-O3 -march=native -mtune=native -mavx -ffast-math -ffree-line-length-none"
PSYDAC_DEFAULT_FOLDER['name'] = '__psydac__' + backend['folder']
# Define topological domain
Omega = Domain.from_file(filename=filename)
# Method of manufactured solutions: define exact
# solution u_e, then compute right-hand side f
x, y, z = Omega.coordinates
u_e = sin(pi*x)*sin(pi*y)*sin(pi*z)
f = laplace(laplace(u_e))
f = TerminalExpr(f, Omega)
# Define abstract model
V = ScalarFunctionSpace('V', Omega)
u, v = elements_of(V, names='u, v')
nn = NormalVector('nn')
kappa = 10*ncells[0]*degree[0]
expr_b = - laplace(u)*dot(grad(v), nn)\
- dot(grad(u), nn)*laplace(v) \
+ kappa*dot(grad(u),nn)*dot(grad(v),nn)
a = BilinearForm((u,v), integral(Omega, laplace(v) * laplace(u)) + integral(Omega.boundary, expr_b))
expr_b = - dot(grad(u_e), nn)*laplace(v) \
+ kappa*dot(grad(u_e),nn)*dot(grad(v),nn)
l = LinearForm( v , integral(Omega, f * v) + integral(Omega.boundary, expr_b))
bc = [EssentialBC( u, 0, Omega.boundary)]
# EssentialBC(dot(grad(u), nn), dot(grad(u_e), nn), Omega.boundary)]
equation = find(u, forall=v, lhs=a(u,v), rhs=l(v), bc=bc)
# Define (abstract) error norms
error = u - u_e
l2norm = Norm(error, Omega, kind='l2')
h1norm = Norm(error, Omega, kind='h1')
h2norm = Norm(error, Omega, kind='h2')
# Create computational domain from topological domain
Omega_h = discretize(Omega, filename=filename, comm=comm)
# Create discrete spline space
Vh = discretize(V, Omega_h,degree=degree)
# Discretize equation
equation_h = discretize(equation, Omega_h, [Vh, Vh], backend=PSYDAC_BACKEND_GPYCCEL)
# Discretize norms
l2norm_h = discretize(l2norm, Omega_h, Vh, backend=PSYDAC_BACKEND_GPYCCEL)
h1norm_h = discretize(h1norm, Omega_h, Vh, backend=PSYDAC_BACKEND_GPYCCEL)
h2norm_h = discretize(h2norm, Omega_h, Vh, backend=PSYDAC_BACKEND_GPYCCEL)
# Solve discrete equation to obtain finite element coefficients
equation_h.set_solver(solver='cg' ,tol=1e-18, maxiter=100, info=True, verbose=False)
comm.Barrier()
try:
remove_folder(backend['folder'])
remove_folder(PSYDAC_DEFAULT_FOLDER['name'])
except:
pass
comm.Barrier()
setup_time2 = time()
T = comm.reduce(setup_time2-setup_time1,op=MPI.MAX)
infos = {}
infos['title'] = 'biharmonic_3d'
infos['setup_time'] = T
infos['ncells'] = tuple(ncells)
infos['degree'] = tuple(degree)
infos['cart_decomposition'] = tuple(Vh.vector_space.cart.nprocs)
infos['number_of_threads'] = Vh.vector_space.cart.num_threads
#+++++++++++++++++++++++++++++++
# 3. Solution
#+++++++++++++++++++++++++++++++
lhs = equation_h.lhs
rhs = equation_h.rhs
# Solve linear system
comm.barrier()
t1 = time()
A = lhs.assemble()
t2 = time()
T = comm.reduce(t2-t1,op=MPI.MAX)
infos['bilinear_form_assembly_time'] = T
comm.Barrier()
t1 = time()
b = lhs.assemble()
t2 = time()
T = comm.reduce(t2-t1,op=MPI.MAX)
infos['blinear_form_assembly_time2'] = T
b = rhs.assemble()
out = b.copy()
st = 0
for i in range(20):
comm.Barrier()
t1 = time()
A.dot(b, out=out)
t2 = time()
b.ghost_regions_in_sync = False
st += t2-t1
T = comm.reduce(st/20,op=MPI.MAX)
infos['dot_product_time'] = T
st = 0
for i in range(20):
comm.Barrier()
t1 = time()
b.update_ghost_regions()
t2 = time()
st += t2-t1
T = comm.reduce(st/20,op=MPI.MAX)
infos['dot_product_communication_time'] = T
equation_h.set_solver('cg', tol=1e-18, maxiter=100, info=True)
equation_h.assemble()
t1 = time()
# Solve linear system
uh, info = equation_h.solve()
t2 = time()
infos.update(info)
infos['solve_time'] = comm.reduce(t2-t1,op=MPI.MAX)
# Compute error norms
l2_error = l2norm_h.assemble(u=uh)
h1_error = h1norm_h.assemble(u=uh)
infos['l2_error'] = l2_error
infos['h1_error'] = h1_error
if comm.rank == 0:
name = (infos['title'],) + (('geof',) if filename else ()) + infos['ncells'] + infos['degree'] + (comm.size, infos['number_of_threads'])
name = '_'.join([str(i) for i in name])
np.save('results/' + name, infos)
u_h,info = equation_h.solve()
return locals()
#==============================================================================
def parse_input_arguments():
import argparse
parser = argparse.ArgumentParser(
formatter_class = argparse.ArgumentDefaultsHelpFormatter,
description = "Solve the biharmonic equation on a 3D domain with" +
" inhomogeneous Dirichlet boundary conditions."
)
parser.add_argument( '-d',
type = int,
nargs = 3,
default = [2, 2, 2],
metavar = ('P1', 'P2', 'P3'),
dest = 'degree',
help = 'Spline degree along each dimension'
)
parser.add_argument( '-n',
type = int,
nargs = 3,
default = [10, 10, 10],
metavar = ('N1', 'N2', 'N3'),
dest = 'ncells',
help = 'Number of grid cells (elements) along each dimension'
)
parser.add_argument('-a', action='store_true', \
help='Use analytical mapping.', \
dest='analytical')
parser.add_argument( '-m',
type = str,
nargs = 1,
default = ['identity'],
dest = 'mapping',
help = 'mapping'
)
return parser.parse_args()
#==============================================================================
def main(degree, ncells, **kwargs):
comm = MPI.COMM_WORLD
rank = comm.rank
# construct_mapping(ncells, degree, comm)
filename = 'mesh/quarter_annulus_3d_{}_{}.h5'.format(ncells[0], degree[0])
namespace = run_model(filename, ncells, degree, comm, backend=PSYDAC_BACKEND_GPYCCEL)
return namespace
#==============================================================================
if __name__ == '__main__':
args = parse_input_arguments()
args = vars(args)
namespace = main( **args )