-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvote_filtering.py
88 lines (58 loc) · 3.21 KB
/
vote_filtering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import copy
import pandas as pd
pd.options.display.float_format = '{:.2f}'.format
from utils import preety_print_model_ratings, get_rank, preprocess_data, compute_mle_elo_dict
import argparse
import json
parser = argparse.ArgumentParser()
parser.add_argument('--rigging_mode', type=str, default='omni_bt_diff')
parser.add_argument('--beta', type=float, default=1.0)
parser.add_argument('--classifier_acc', type=float, default=1.0)
parser.add_argument('--filter_threshold', type=float, default=0.7)
parser.add_argument('--model_name_list', nargs='+', default=['phi-3-mini-4k-instruct-june-2024'])
args = parser.parse_args()
K = 4
BASE = 10
SCALE = 400
# Initialize the rigging environment
X_initial, Y_initial, win_matrix_initial, sample_weights_ori = preprocess_data('data/data_x.npy', 'data/data_y.npy','data/vh_win_matrix.csv')
model_name_sorted = []
for model_name in win_matrix_initial.index:
model_name_sorted.append(model_name) if model_name not in model_name_sorted else None
print('Calculate Initial Rating')
elo_ratings, _ = compute_mle_elo_dict([], X=X_initial, Y=Y_initial, ptbl_win=win_matrix_initial, sample_weights=sample_weights_ori)
initial_ranking = preety_print_model_ratings(elo_ratings)
print('---------------initial ranking---------------')
print(initial_ranking)
print('---------------------------------------------')
initial_rating = {}
for idx, key in enumerate(initial_ranking['Model'].keys()):
initial_rating[initial_ranking.loc[key, 'Model']] = initial_ranking.loc[key, 'Elo rating']
result_dict = {}
for target_model in args.model_name_list:
ori_rank = get_rank(initial_ranking, target_model)
tot_dict = {}
tot_battle_list = []
with open(f'voting_output/{target_model}_{args.rigging_mode}_acc_{args.classifier_acc}_prob_dec_{args.beta}.json') as f:
manipulated_battle_dict = json.load(f)
for idx, key in enumerate(manipulated_battle_dict.keys()):
model_a = manipulated_battle_dict[key]['model_a']
model_b = manipulated_battle_dict[key]['model_b']
winner = manipulated_battle_dict[key]['winner']
ra = initial_rating[model_a]
rb = initial_rating[model_b]
ea = 1 / (1 + BASE ** ((rb - ra) / SCALE))
eb = 1 / (1 + BASE ** ((ra - rb) / SCALE))
if (winner == 'model_b' and ea > args.filter_threshold) or (winner == 'model_a' and eb > args.filter_threshold):
continue
tot_dict[idx] = {'model_a': model_a, 'model_b': model_b, 'winner': winner}
for idx, key_idx in enumerate(tot_dict.keys()):
tot_battle_list.append(tot_dict[key_idx])
final_ranking, _ = compute_mle_elo_dict(tot_battle_list, X=X_initial, Y=Y_initial, ptbl_win=win_matrix_initial, sample_weights=copy.deepcopy(sample_weights_ori))
final_ranking = preety_print_model_ratings(final_ranking)
final_rank = get_rank(final_ranking, target_model)
result_dict[f'{target_model}'] = {'ori_rank': ori_rank, 'final_rank': final_rank}
os.makedirs('voting_output/filtered_votes', exist_ok=True)
with open(f'voting_output/filtered_votes/{args.rigging_mode}_thre_{args.filter_threshold}.json', 'w') as f:
json.dump(result_dict, f, indent=4)