Skip to content

Latest commit

 

History

History
101 lines (86 loc) · 4.91 KB

alignment_as_cdb.md

File metadata and controls

101 lines (86 loc) · 4.91 KB

LLM alignment as contextual dueling bandits

LLM alignment is essentially an online learning and decision making problem where the agent (e.g., the LLM policy with an optional built-in reward model) interacts with the environment (i.e., humans) to achieve either of the two distinct objectives: minimizing cumulative regret in the Explore & Exploit setting or minimizing anytime regret in the Best Arm Identification setting.

In our paper, we formalize LLM alignment as a contextual dueling bandit (CDB) problem (see illustration below) and propose a sample-efficient alignment approach based on Thompson sampling.

The CDB framework necessitates an efficient online training system to validate the proposed method and compare it with other baselines. Oat 🌾 is developed as part of this research initiative.

Using the CDB framework, existing LLM alignment paradigms can be summarized as follows:

For more details, please check out our paper!

Examples

Below is an example to align a 1-B Pythia SFT Model on the tl;dr dataset using online SimPO with PairRM as the preference oracle:

Warning

Aligning with PairRM provides a lightweight example setup. For reproducing results from the paper or developing custom online alignment algorithms, we recommend using stronger reward models (or GPT-as-a-judge) as a preference oracle. This approach better approximates the ideal case of a human population. See the examples.

python -m oat.experiment.main \
    --gpus 2 \
    --collocate \
    --dap-algo SimPO \
    --beta 2 \
    --preference-oracle pairrm \
    --pretrain trl-lib/pythia-1b-deduped-tldr-sft \
    --prompt-data lkevinzc/tldr-with-sft-reference \
    --output_key pythia-1b-reference \
    --sync-params-every 1 \
    --rollout-batch-size-per-device 64 \
    --pi-buffer-maxlen-per-device 64 \
    --train-batch-size-per-device 8 \
    --use-wb \
    --wb-run-name 1b_pairrm_simpo_online

This example completes in less than two hours on two A100-40G GPUs!

To run an offline SimPO baseline for comparison, we disable weights synchronization from the learner to actors by adjusting the sync-params-every argument:

python -m oat.experiment.main \
    --gpus 2 \
    --collocate \
    --dap-algo SimPO \
    --beta 2 \
    --preference-oracle pairrm \
    --pretrain trl-lib/pythia-1b-deduped-tldr-sft \
    --prompt-data lkevinzc/tldr-with-sft-reference \
    --output_key pythia-1b-reference \
-   --sync-params-every 1 \
+   --sync-params-every 9999 \ # any number > total gradient step (50000//128=390)
    --rollout-batch-size-per-device 64 \
    --pi-buffer-maxlen-per-device 64 \
    --train-batch-size-per-device 8 \
    --use-wb \
-   --wb-run-name 1b_pairrm_simpo_online
+   --wb-run-name 1b_pairrm_simpo_offline

Finally, we run SEA SimPO (with $\gamma=1$, see here for the meaning of $\gamma$) to verify its capability of sample-efficient alignment. This experiment utilizes 4 GPUs, with a reduced per-device training batch size to accommodate the training of an additional epistemic reward model. The per-device rollout batch size and buffer length are adjusted to ensure a global batch size of 128. Additionally, 10 response candidates are generated for exploration using BAI Thompson sampling.

python -m oat.experiment.main \
-   --gpus 2 \
+   --gpus 4 \
    --dap-algo SimPO \
    --beta 2 \
    --preference-oracle pairrm \
    --pretrain trl-lib/pythia-1b-deduped-tldr-sft \
    --prompt-data lkevinzc/tldr-with-sft-reference \
    --output_key pythia-1b-reference \
    --sync-params-every 1 \
-   --rollout-batch-size-per-device 64 \
-   --pi-buffer-maxlen-per-device 64 \
-   --train-batch-size-per-device 8 \
+   --rollout-batch-size-per-device 32 \
+   --pi-buffer-maxlen-per-device 32 \
+   --train-batch-size-per-device 1 \
+   --learn-rm \
+   --exp-method EnnBAITS \
+   --num_samples 10 \
    --use-wb \
-   --wb-run-name 1b_pairrm_simpo_online
+   --wb-run-name 1b_pairrm_simpo_sea

Check out this tutorial for more examples covering:

  • Various direct optimizers, including DPO, IPO, and SLiC.
  • Different modes of preference oracles, such as remote reward models and GPT-as-a-judge.
  • Additional LLM exploration algorithms, e.g., APL, XPO, and EE4LLM.