forked from bingykang/Fewshot_Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dynamic_conv.py
executable file
·168 lines (147 loc) · 6.83 KB
/
dynamic_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import math
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
import torch.nn.functional as F
from torch.nn.modules.utils import _single, _pair, _triple
import pdb
class _ConvNd(nn.Module):
"""https://pytorch.org/docs/stable/_modules/torch/nn/modules/conv.html#Conv2d"""
partial = None
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, dilation, transposed, output_padding, groups, bias):
super(_ConvNd, self).__init__()
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = transposed
self.output_padding = output_padding
self.groups = groups
'''
if transposed:
self.weight = Parameter(torch.Tensor(
in_channels, out_channels // groups, *kernel_size))
else:
self.weight = Parameter(torch.Tensor(
out_channels, in_channels // groups, *kernel_size))
'''
if self.partial is not None:
assert self.partial <= self.out_channels
self.weight = Parameter(torch.Tensor(
self.partial, *kernel_size))
else:
self.register_parameter('weight', None)
# if bias:
# self.bias = Parameter(torch.Tensor(out_channels))
# else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
if self.partial is not None:
n = self.partial
for k in self.kernel_size:
n *= k
stdv = 1. / math.sqrt(n)
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def __repr__(self):
s = ('{name}({in_channels}, {out_channels}, kernel_size={kernel_size}'
', stride={stride}')
if self.padding != (0,) * len(self.padding):
s += ', padding={padding}'
if self.dilation != (1,) * len(self.dilation):
s += ', dilation={dilation}'
if self.output_padding != (0,) * len(self.output_padding):
s += ', output_padding={output_padding}'
if self.groups != 1:
s += ', groups={groups}'
if self.bias is None:
s += ', bias=False'
s += ')'
return s.format(name=self.__class__.__name__, **self.__dict__)
# class DynamicConv2d(_ConvNd):
# def __init__(self, in_channels, out_channels, kernel_size, stride=1,
# padding=0, dilation=1, groups=1, bias=False):
# # assert(in_channels == out_channels)
# kernel_size = _pair(kernel_size)
# stride = _pair(stride)
# padding = _pair(padding)
# dilation = _pair(dilation)
# super(DynamicConv2d, self).__init__(
# in_channels, out_channels, kernel_size, stride, padding, dilation,
# False, _pair(0), groups, bias)
# def forward(self, inputs):
# input, dynamic_weight = inputs
# assert tuple(dynamic_weight.size())[-2:] == self.kernel_size
# # Get batch size
# batch_size = input.size(0)
# n_channels = input.size(1)
# groups = batch_size * n_channels
# # Reshape input tensor from size (N, C, H, W) to (1, N*C, H, W)
# input = input.view(1, -1, input.size(2), input.size(3))
# # Reshape dynamic_weight tensor from size (N, C, H, W) to (1, N*C, H, W)
# dynamic_weight = dynamic_weight.view(-1, 1, dynamic_weight.size(2), dynamic_weight.size(3))
# # Do convolution
# conv_rlt = F.conv2d(input, dynamic_weight, self.bias, self.stride,
# self.padding, self.dilation, groups)
# # Reshape conv_rlt tensor from (1, N*C, H, W) to (N, C, H, W)
# conv_rlt = conv_rlt.view(batch_size, -1, conv_rlt.size(2), conv_rlt.size(3))
# return conv_rlt
def dynamic_conv2d(is_first, partial=None):
class DynamicConv2d(_ConvNd):
is_first = None
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=False):
# assert(in_channels == out_channels)nami
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
super(DynamicConv2d, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
False, _pair(0), groups, bias)
def forward(self, inputs):
assert self.is_first is not None, 'Please set the state of DynamicConv2d first.'
# pdb.set_trace()
input, dynamic_weight = inputs
assert tuple(dynamic_weight.size())[-2:] == self.kernel_size
assert dynamic_weight.size(1) % input.size(1) == 0
n_cls = dynamic_weight.size(0)
# Take care of partial prediction
if self.partial is not None:
shared_weight = self.weight.repeat(n_cls, 1, 1, 1)
dynamic_weight = torch.cat([shared_weight, dynamic_weight], dim=1)
if self.is_first:
# Get batch size
batch_size = input.size(0)
n_channels = input.size(1)
# input tensor (N, C, H, W) -> (N, C*n_cls, H, W)
input = input.repeat(1, n_cls, 1, 1)
else:
assert input.size(0) % n_cls == 0, "Input batch size does not match with n_cls"
batch_size = input.size(0) // n_cls
n_channels = input.size(1)
in_size = (input.size(-2), input.size(-1))
input = input.view(batch_size, n_cls*n_channels, *in_size)
# Get group size
group_size = dynamic_weight.size(1) // n_channels
# Calculate the number of channels
groups = n_cls * n_channels // group_size
# Reshape dynamic_weight tensor from size (N, C, H, W) to (N*C, 1, H, W)
dynamic_weight = dynamic_weight.view(-1, group_size, dynamic_weight.size(2), dynamic_weight.size(3))
conv_rlt = F.conv2d(input, dynamic_weight, self.bias, self.stride,
self.padding, self.dilation, groups)
feat_size = (conv_rlt.size(-2), conv_rlt.size(-1))
conv_rlt = conv_rlt.view(-1, n_channels, *feat_size)
return conv_rlt
DynamicConv2d.is_first = is_first
DynamicConv2d.partial = partial
return DynamicConv2d