forked from bingykang/Fewshot_Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
region_loss.py
executable file
·378 lines (340 loc) · 17.3 KB
/
region_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import time
import torch
import math
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
from utils import *
from cfg import cfg
from numbers import Number
from random import random
import pdb
def neg_filter(pred_boxes, target, withids=False):
assert pred_boxes.size(0) == target.size(0)
if cfg.neg_ratio == 'full':
inds = list(range(pred_boxes.size(0)))
elif isinstance(cfg.neg_ratio, Number):
flags = torch.sum(target, 1) != 0
flags = flags.cpu().data.tolist()
ratio = cfg.neg_ratio * sum(flags) * 1. / (len(flags) - sum(flags))
if ratio >= 1:
inds = list(range(pred_boxes.size(0)))
else:
flags = [0 if f == 0 and random() > ratio else 1 for f in flags]
inds = np.argwhere(flags).squeeze()
pred_boxes, target = pred_boxes[inds], target[inds]
else:
raise NotImplementedError('neg_ratio not recognized')
if withids:
return pred_boxes, target, inds
else:
return pred_boxes, target
def build_targets(pred_boxes, target, anchors, num_anchors, num_classes, nH, nW, noobject_scale, object_scale, sil_thresh, seen):
nB = target.size(0)
nA = num_anchors
nC = num_classes
anchor_step = len(anchors)/num_anchors
# print('anchor_step: ', anchor_step)
conf_mask = torch.ones(nB, nA, nH, nW) * noobject_scale
coord_mask = torch.zeros(nB, nA, nH, nW)
cls_mask = torch.zeros(nB, nA, nH, nW)
tx = torch.zeros(nB, nA, nH, nW)
ty = torch.zeros(nB, nA, nH, nW)
tw = torch.zeros(nB, nA, nH, nW)
th = torch.zeros(nB, nA, nH, nW)
tconf = torch.zeros(nB, nA, nH, nW)
tcls = torch.zeros(nB, nA, nH, nW)
nAnchors = nA*nH*nW
nPixels = nH*nW
for b in xrange(nB):
cur_pred_boxes = pred_boxes[b*nAnchors:(b+1)*nAnchors].t()
cur_ious = torch.zeros(nAnchors)
for t in xrange(cfg.max_boxes):
if target[b][t*5+1] == 0:
break
gx = target[b][t*5+1]*nW
gy = target[b][t*5+2]*nH
gw = target[b][t*5+3]*nW
gh = target[b][t*5+4]*nH
cur_gt_boxes = torch.FloatTensor([gx,gy,gw,gh]).repeat(nAnchors,1).t()
cur_ious = torch.max(cur_ious, bbox_ious(cur_pred_boxes, cur_gt_boxes, x1y1x2y2=False))
# Find anchors with iou > sil_thresh
# no loss for that one
conf_mask[b][cur_ious>sil_thresh] = 0
if seen < 12800:
if anchor_step == 4:
tx = torch.FloatTensor(anchors).view(nA, anchor_step).index_select(1, torch.LongTensor([2])).view(1,nA,1,1).repeat(nB,1,nH,nW)
ty = torch.FloatTensor(anchors).view(nA, anchor_step).index_select(1, torch.LongTensor([2])).view(1,nA,1,1).repeat(nB,1,nH,nW)
else:
tx.fill_(0.5)
ty.fill_(0.5)
tw.zero_()
th.zero_()
coord_mask.fill_(1)
nGT = 0
nCorrect = 0
for b in xrange(nB):
# pdb.set_trace()
for t in xrange(50):
if target[b][t*5+1] == 0:
break
nGT = nGT + 1
best_iou = 0.0
best_n = -1
min_dist = 10000
gx = target[b][t*5+1] * nW
gy = target[b][t*5+2] * nH
gi = int(gx)
gj = int(gy)
gw = target[b][t*5+3]*nW
gh = target[b][t*5+4]*nH
gt_box = [0, 0, gw, gh]
for n in xrange(nA):
aw = anchors[anchor_step*n]
ah = anchors[anchor_step*n+1]
anchor_box = [0, 0, aw, ah]
iou = bbox_iou(anchor_box, gt_box, x1y1x2y2=False)
if anchor_step == 4:
ax = anchors[anchor_step*n+2]
ay = anchors[anchor_step*n+3]
dist = pow(((gi+ax) - gx), 2) + pow(((gj+ay) - gy), 2)
if iou > best_iou:
best_iou = iou
best_n = n
elif anchor_step==4 and iou == best_iou and dist < min_dist:
best_iou = iou
best_n = n
min_dist = dist
gt_box = [gx, gy, gw, gh]
pred_box = pred_boxes[b*nAnchors+best_n*nPixels+gj*nW+gi]
coord_mask[b][best_n][gj][gi] = 1
cls_mask[b][best_n][gj][gi] = 1
conf_mask[b][best_n][gj][gi] = object_scale
tx[b][best_n][gj][gi] = target[b][t*5+1] * nW - gi
ty[b][best_n][gj][gi] = target[b][t*5+2] * nH - gj
tw[b][best_n][gj][gi] = math.log(gw/anchors[anchor_step*best_n])
th[b][best_n][gj][gi] = math.log(gh/anchors[anchor_step*best_n+1])
iou = bbox_iou(gt_box, pred_box, x1y1x2y2=False) # best_iou
tconf[b][best_n][gj][gi] = iou
tcls[b][best_n][gj][gi] = target[b][t*5]
if iou > 0.5:
nCorrect = nCorrect + 1
return nGT, nCorrect, coord_mask, conf_mask, cls_mask, tx, ty, tw, th, tconf, tcls
class RegionLoss(nn.Module):
def __init__(self, num_classes=0, anchors=[], num_anchors=1):
super(RegionLoss, self).__init__()
self.num_classes = num_classes
self.anchors = anchors
self.num_anchors = num_anchors
self.anchor_step = len(anchors)/num_anchors
self.coord_scale = 1
self.noobject_scale = 1
self.object_scale = 5
self.class_scale = 1
self.thresh = 0.6
self.seen = 0
def forward(self, output, target):
# import pdb; pdb.set_trace()
#output : BxAs*(4+1+num_classes)*H*W
# if target.dim() == 3:
# # target : B * n_cls * l
# l = target.size(-1)
# target = target.permute(1,0,2).contiguous().view(-1, l)
if target.dim() == 3:
target = target.view(-1, target.size(-1))
bef = target.size(0)
output, target = neg_filter(output, target)
# print("{}/{}".format(target.size(0), bef))
t0 = time.time()
nB = output.data.size(0)
nA = self.num_anchors
nC = self.num_classes
nH = output.data.size(2)
nW = output.data.size(3)
output = output.view(nB, nA, (5+nC), nH, nW)
x = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([0]))).view(nB, nA, nH, nW))
y = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([1]))).view(nB, nA, nH, nW))
w = output.index_select(2, Variable(torch.cuda.LongTensor([2]))).view(nB, nA, nH, nW)
h = output.index_select(2, Variable(torch.cuda.LongTensor([3]))).view(nB, nA, nH, nW)
conf = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([4]))).view(nB, nA, nH, nW))
# [nB, nA, nC, nW, nH] | (bs, 5, 1, 13, 13)
cls = output.index_select(2, Variable(torch.linspace(5,5+nC-1,nC).long().cuda()))
cls = cls.view(nB*nA, nC, nH*nW).transpose(1,2).contiguous().view(nB*nA*nH*nW, nC)
t1 = time.time()
pred_boxes = torch.cuda.FloatTensor(4, nB*nA*nH*nW)
grid_x = torch.linspace(0, nW-1, nW).repeat(nH,1).repeat(nB*nA, 1, 1).view(nB*nA*nH*nW).cuda()
grid_y = torch.linspace(0, nH-1, nH).repeat(nW,1).t().repeat(nB*nA, 1, 1).view(nB*nA*nH*nW).cuda()
anchor_w = torch.Tensor(self.anchors).view(nA, self.anchor_step).index_select(1, torch.LongTensor([0])).cuda()
anchor_h = torch.Tensor(self.anchors).view(nA, self.anchor_step).index_select(1, torch.LongTensor([1])).cuda()
anchor_w = anchor_w.repeat(nB, 1).repeat(1, 1, nH*nW).view(nB*nA*nH*nW)
anchor_h = anchor_h.repeat(nB, 1).repeat(1, 1, nH*nW).view(nB*nA*nH*nW)
pred_boxes[0] = x.data + grid_x
pred_boxes[1] = y.data + grid_y
pred_boxes[2] = torch.exp(w.data) * anchor_w
pred_boxes[3] = torch.exp(h.data) * anchor_h
pred_boxes = convert2cpu(pred_boxes.transpose(0,1).contiguous().view(-1,4))
t2 = time.time()
nGT, nCorrect, coord_mask, conf_mask, cls_mask, tx, ty, tw, th, tconf,tcls = build_targets(pred_boxes, target.data, self.anchors, nA, nC, \
nH, nW, self.noobject_scale, self.object_scale, self.thresh, self.seen)
cls_mask = (cls_mask == 1)
if cfg.metayolo:
tcls.zero_()
nProposals = int((conf > 0.25).float().sum().data[0])
tx = Variable(tx.cuda())
ty = Variable(ty.cuda())
tw = Variable(tw.cuda())
th = Variable(th.cuda())
tconf = Variable(tconf.cuda())
tcls = Variable(tcls.view(-1)[cls_mask].long().cuda())
coord_mask = Variable(coord_mask.cuda())
conf_mask = Variable(conf_mask.cuda().sqrt())
cls_mask = Variable(cls_mask.view(-1, 1).repeat(1,nC).cuda())
cls = cls[cls_mask].view(-1, nC)
t3 = time.time()
loss_x = self.coord_scale * nn.MSELoss(size_average=False)(x*coord_mask, tx*coord_mask)/2.0
loss_y = self.coord_scale * nn.MSELoss(size_average=False)(y*coord_mask, ty*coord_mask)/2.0
loss_w = self.coord_scale * nn.MSELoss(size_average=False)(w*coord_mask, tw*coord_mask)/2.0
loss_h = self.coord_scale * nn.MSELoss(size_average=False)(h*coord_mask, th*coord_mask)/2.0
loss_conf = nn.MSELoss(size_average=False)(conf*conf_mask, tconf*conf_mask)/2.0
loss_cls = self.class_scale * nn.CrossEntropyLoss(size_average=False)(cls, tcls)
loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls
t4 = time.time()
if False:
print('-----------------------------------')
print(' activation : %f' % (t1 - t0))
print(' create pred_boxes : %f' % (t2 - t1))
print(' build targets : %f' % (t3 - t2))
print(' create loss : %f' % (t4 - t3))
print(' total : %f' % (t4 - t0))
print('%d: nGT %d, recall %d, proposals %d, loss: x %f, y %f, w %f, h %f, conf %f, cls %f, total %f' % (self.seen, nGT, nCorrect, nProposals, loss_x.data[0], loss_y.data[0], loss_w.data[0], loss_h.data[0], loss_conf.data[0], loss_cls.data[0], loss.data[0]))
return loss
class RegionLossV2(nn.Module):
"""
Yolo region loss + Softmax classification across meta-inputs
"""
def __init__(self, num_classes=0, anchors=[], num_anchors=1):
super(RegionLossV2, self).__init__()
self.num_classes = num_classes
self.anchors = anchors
self.num_anchors = num_anchors
self.anchor_step = len(anchors)/num_anchors
self.coord_scale = 1
self.noobject_scale = 1
self.object_scale = 5
self.class_scale = 1
self.thresh = 0.6
self.seen = 0
print('class_scale', self.class_scale)
def forward(self, output, target):
#output : BxAs*(4+1+num_classes)*H*W
# Get all classification prediction
# pdb.set_trace()
bs = target.size(0)
cs = target.size(1)
nA = self.num_anchors
nC = self.num_classes
nH = output.data.size(2)
nW = output.data.size(3)
cls = output.view(output.size(0), nA, (5+nC), nH, nW)
cls = cls.index_select(2, Variable(torch.linspace(5,5+nC-1,nC).long().cuda())).squeeze()
cls = cls.view(bs, cs, nA*nC*nH*nW).transpose(1,2).contiguous().view(bs*nA*nC*nH*nW, cs)
# Rearrange target and perform filtering operation
target = target.view(-1, target.size(-1))
# bef = target.size(0)
output, target, inds = neg_filter(output, target, withids=True)
counts, _ = np.histogram(inds, bins=bs, range=(0, bs*cs))
# print("{}/{}".format(target.size(0), bef))
t0 = time.time()
nB = output.data.size(0)
output = output.view(nB, nA, (5+nC), nH, nW)
x = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([0]))).view(nB, nA, nH, nW))
y = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([1]))).view(nB, nA, nH, nW))
w = output.index_select(2, Variable(torch.cuda.LongTensor([2]))).view(nB, nA, nH, nW)
h = output.index_select(2, Variable(torch.cuda.LongTensor([3]))).view(nB, nA, nH, nW)
conf = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([4]))).view(nB, nA, nH, nW))
# [nB, nA, nC, nW, nH] | (bs, 5, 1, 13, 13)
# cls = output.index_select(2, Variable(torch.linspace(5,5+nC-1,nC).long().cuda()))
# cls = cls.view(nB*nA, nC, nH*nW).transpose(1,2).contiguous().view(nB*nA*nH*nW, nC)
t1 = time.time()
pred_boxes = torch.cuda.FloatTensor(4, nB*nA*nH*nW)
grid_x = torch.linspace(0, nW-1, nW).repeat(nH,1).repeat(nB*nA, 1, 1).view(nB*nA*nH*nW).cuda()
grid_y = torch.linspace(0, nH-1, nH).repeat(nW,1).t().repeat(nB*nA, 1, 1).view(nB*nA*nH*nW).cuda()
anchor_w = torch.Tensor(self.anchors).view(nA, self.anchor_step).index_select(1, torch.LongTensor([0])).cuda()
anchor_h = torch.Tensor(self.anchors).view(nA, self.anchor_step).index_select(1, torch.LongTensor([1])).cuda()
anchor_w = anchor_w.repeat(nB, 1).repeat(1, 1, nH*nW).view(nB*nA*nH*nW)
anchor_h = anchor_h.repeat(nB, 1).repeat(1, 1, nH*nW).view(nB*nA*nH*nW)
pred_boxes[0] = x.data + grid_x
pred_boxes[1] = y.data + grid_y
pred_boxes[2] = torch.exp(w.data) * anchor_w
pred_boxes[3] = torch.exp(h.data) * anchor_h
pred_boxes = convert2cpu(pred_boxes.transpose(0,1).contiguous().view(-1,4))
t2 = time.time()
nGT, nCorrect, coord_mask, conf_mask, cls_mask, tx, ty, tw, th, tconf,tcls = build_targets(pred_boxes, target.data, self.anchors, nA, nC, \
nH, nW, self.noobject_scale, self.object_scale, self.thresh, self.seen)
# Take care of class mask
cls_num = torch.sum(cls_mask)
idx_start = 0
cls_mask_list = []
tcls_list = []
for i in range(len(counts)):
if counts[i] == 0:
cur_mask = torch.zeros(nA, nH, nW)
cur_tcls = torch.zeros(nA, nH, nW)
else:
cur_mask = torch.sum(cls_mask[idx_start:idx_start+counts[i]], dim=0)
cur_tcls = torch.sum(tcls[idx_start:idx_start+counts[i]], dim=0)
cls_mask_list.append(cur_mask)
tcls_list.append(cur_tcls)
idx_start += counts[i]
cls_mask = torch.stack(cls_mask_list)
tcls = torch.stack(tcls_list)
cls_mask = (cls_mask == 1)
nProposals = int((conf > 0.25).float().sum().data[0])
tx = Variable(tx.cuda())
ty = Variable(ty.cuda())
tw = Variable(tw.cuda())
th = Variable(th.cuda())
tconf = Variable(tconf.cuda())
coord_mask = Variable(coord_mask.cuda())
conf_mask = Variable(conf_mask.cuda().sqrt())
# cls_mask = Variable(cls_mask.view(-1, 1).repeat(1,cs).cuda())
cls = cls[Variable(cls_mask.view(-1, 1).repeat(1,cs).cuda())].view(-1, cs)
tcls = Variable(tcls.view(-1)[cls_mask].long().cuda())
ClassificationLoss = nn.CrossEntropyLoss(size_average=False)
t3 = time.time()
loss_x = self.coord_scale * nn.MSELoss(size_average=False)(x*coord_mask, tx*coord_mask)/2.0
loss_y = self.coord_scale * nn.MSELoss(size_average=False)(y*coord_mask, ty*coord_mask)/2.0
loss_w = self.coord_scale * nn.MSELoss(size_average=False)(w*coord_mask, tw*coord_mask)/2.0
loss_h = self.coord_scale * nn.MSELoss(size_average=False)(h*coord_mask, th*coord_mask)/2.0
loss_conf = nn.MSELoss(size_average=False)(conf*conf_mask, tconf*conf_mask)/2.0
loss_cls = self.class_scale * ClassificationLoss(cls, tcls)
# # pdb.set_trace()
# ids = [9,11,12,16]
# new_cls, new_tcls = select_classes(cls, tcls, ids)
# new_tcls = Variable(torch.from_numpy(new_tcls).long().cuda())
# loss_cls_new = self.class_scale * nn.CrossEntropyLoss(size_average=False)(new_cls, new_tcls)
# loss_cls_new *= 10
# loss_cls += loss_cls_new
loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls
t4 = time.time()
if False:
print('-----------------------------------')
print(' activation : %f' % (t1 - t0))
print(' create pred_boxes : %f' % (t2 - t1))
print(' build targets : %f' % (t3 - t2))
print(' create loss : %f' % (t4 - t3))
print(' total : %f' % (t4 - t0))
print('%d: nGT %d, recall %d, proposals %d, loss: x %f, y %f, w %f, h %f, conf %f, cls %f, total %f' % (self.seen, nGT, nCorrect, nProposals, loss_x.data[0], loss_y.data[0], loss_w.data[0], loss_h.data[0], loss_conf.data[0], loss_cls.data[0], loss.data[0]))
# print('%d: nGT %d, recall %d, proposals %d, loss: x %f, y %f, w %f, h %f, conf %f, cls %f, cls_new %f, total %f' % (self.seen, nGT, nCorrect, nProposals, loss_x.data[0], loss_y.data[0], loss_w.data[0], loss_h.data[0], loss_conf.data[0], loss_cls.data[0], loss_cls_new.data[0], loss.data[0]))
return loss
def select_classes(pred, tgt, ids):
# convert tgt to numpy
tgt = tgt.cpu().data.numpy()
new_tgt = [(tgt == d) * i for i, d in enumerate(ids)]
new_tgt = np.max(np.stack(new_tgt), axis=0)
idxes = np.argwhere(new_tgt > 0).squeeze()
new_pred = pred[idxes]
new_pred = new_pred[:, ids]
new_tgt = new_tgt[idxes]
return new_pred, new_tgt