forked from bingykang/Fewshot_Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalid.py
executable file
·110 lines (96 loc) · 3.65 KB
/
valid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from darknet import Darknet
import dataset
import torch
from torch.autograd import Variable
from torchvision import datasets, transforms
from utils import *
from cfg import cfg
from cfg import parse_cfg
import os
def valid(datacfg, cfgfile, weightfile, outfile):
options = read_data_cfg(datacfg)
valid_images = options['valid']
# backup = cfg.backup
backup = weightfile.split('/')[-2]
ckpt = weightfile.split('/')[-1].split('.')[0]
prefix = 'results/' + backup.split('/')[-1] + '/e' + ckpt
print('saving to: ' + prefix)
names = cfg.classes
with open(valid_images) as fp:
tmp_files = fp.readlines()
valid_files = [item.rstrip() for item in tmp_files]
m = Darknet(cfgfile)
m.print_network()
m.load_weights(weightfile)
m.cuda()
m.eval()
valid_dataset = dataset.listDataset(valid_images, shape=(m.width, m.height),
shuffle=False,
transform=transforms.Compose([
transforms.ToTensor(),
]))
valid_batchsize = 2
assert(valid_batchsize > 1)
kwargs = {'num_workers': 4, 'pin_memory': True}
valid_loader = torch.utils.data.DataLoader(
valid_dataset, batch_size=valid_batchsize, shuffle=False, **kwargs)
fps = [0]*m.num_classes
if not os.path.exists(prefix):
# os.mkdir(prefix)
os.makedirs(prefix)
for i in range(m.num_classes):
buf = '%s/%s%s.txt' % (prefix, outfile, names[i])
fps[i] = open(buf, 'w')
lineId = -1
conf_thresh = 0.005
nms_thresh = 0.45
for batch_idx, (data, target) in enumerate(valid_loader):
data = data.cuda()
data = Variable(data, volatile = True)
output = m(data).data
batch_boxes = get_region_boxes(output, conf_thresh, m.num_classes, m.anchors, m.num_anchors, 0, 1)
for i in range(output.size(0)):
lineId = lineId + 1
fileId = os.path.basename(valid_files[lineId]).split('.')[0]
width, height = get_image_size(valid_files[lineId])
print(valid_files[lineId])
boxes = batch_boxes[i]
boxes = nms(boxes, nms_thresh)
for box in boxes:
x1 = (box[0] - box[2]/2.0) * width
y1 = (box[1] - box[3]/2.0) * height
x2 = (box[0] + box[2]/2.0) * width
y2 = (box[1] + box[3]/2.0) * height
det_conf = box[4]
# import pdb
# pdb.set_trace()
for j in range((len(box)-5)/2):
cls_conf = box[5+2*j]
cls_id = box[6+2*j]
prob =det_conf * cls_conf
fps[cls_id].write('%s %f %f %f %f %f\n' % (fileId, prob, x1, y1, x2, y2))
# fps[cls_id].write('%s %f %f %f %f %f %f\n' % (fileId, det_conf, cls_conf, x1, y1, x2, y2))
for i in range(m.num_classes):
fps[i].close()
if __name__ == '__main__':
import sys
if len(sys.argv) == 4 or len(sys.argv) == 5:
datacfg = sys.argv[1]
cfgfile = sys.argv[2]
weightfile = sys.argv[3]
if len(sys.argv) == 5:
gpu = sys.argv[4]
else:
gpu = '0'
data_options = read_data_cfg(datacfg)
net_options = parse_cfg(cfgfile)[0]
data_options['gpus'] = gpu
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
# Configure options
cfg.config_data(data_options)
cfg.config_net(net_options)
outfile = 'comp4_det_test_'
valid(datacfg, cfgfile, weightfile, outfile)
else:
print('Usage:')
print(' python valid.py datacfg cfgfile weightfile')