-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_DPO.py
60 lines (54 loc) · 2.07 KB
/
train_DPO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from transformers import HfArgumentParser
import wandb
from trainer.trainer import ScriptArguments, load_dataset_hg_local, trainer
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses(
args=[
'--per_device_train_batch_size', '2',
'--per_device_eval_batch_size', '2',
'--gradient_accumulation_steps', '4',
'--model_name_or_path', 'gpt2',
# '--model_name_or_path', 'sshleifer/tiny-gpt2',
# '--model_name_or_path', 'huggy llama/llama-7b',
# '--model_name_or_path', 'meta-llama/Llama-2-7b-hf',
'--load_in_4bit',
'--use_peft',
'--learning_rate', '1e-4',
# '--report_to', 'wandb',
'--run_name', 'DPO-avs-gpt2',
'--max_length', '1024',
'--max_prompt_length', '768',
'--num_train_epochs', '1',
'--max_steps', '-1',
'--evaluation_strategy', 'epoch',
'--eval_steps', '-1',
'--logging_strategy', 'steps',
'--log_steps', '10',
'--logging_first_step',
'--save_strategy', 'epoch',
'--save_steps', '-1',
'--save_total_limit', '3',
'--load_best_model_at_end',
'--metric_for_best_model', 'metrics_policy_rouge1',
'--output_dir', './results/avs/DPO_model/DPO-avs-gpt2(1|1|0.3)',
"--alpha1", "1.0", # sft loss
"--alpha2", "1.0", # dpo loss
"--beta", "0.3",
]
)[0]
# Initialize wandb if reporting to wandb
if script_args.report_to == "wandb":
wandb.init(project=script_args.run_name)
data_subset = "sub_eval_w_simulated_edits"
train_dataset = load_dataset_hg_local(
data_subset,
sanity_check=script_args.sanity_check,
alignment_function=script_args.alignment_function,
)
# 3. Load evaluation dataset
eval_dataset = load_dataset_hg_local(
data_subset,
sanity_check=True,
alignment_function=script_args.alignment_function,
)
dpo_trainer = trainer(script_args, train_dataset, eval_dataset)