-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval_poses.py
127 lines (97 loc) · 3.94 KB
/
eval_poses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python3
# Copyright © Niantic, Inc. 2022.
import argparse
import logging
import math
from pathlib import Path
import cv2
import numpy as np
from scipy.spatial.transform import Rotation
from dataset import CamLocDataset
_logger = logging.getLogger(__name__)
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(
description='Compute metrics for a pre-existing poses file.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('scene', type=Path, help='name of a scene in the dataset folder, e.g. Cambridge_GreatCourt')
parser.add_argument('poses_file', type=Path, help='file containing poses estimated for the input scene')
opt = parser.parse_args()
# Load dataset.
testset = CamLocDataset(
opt.scene / "test",
mode=0, # Default for ACE, we don't need scene coordinates/RGB-D.
)
_logger.info(f"Loaded scene with {len(testset)} frames.")
# load pre-existing poses
with opt.poses_file.open('r') as f:
frame_poses = f.readlines()
_logger.info(f"Loaded {len(frame_poses)} poses.")
# Check.
assert len(testset) == len(frame_poses)
# Keep track of rotation and translation errors for calculation of the median error.
rErrs = []
tErrs = []
# Percentage of frames predicted within certain thresholds from their GT pose.
pct10_5 = 0
pct5 = 0
pct2 = 0
pct1 = 0
# Iterate over the dataset.
for image_idx, (_, _, gt_pose, _, _, _, _, image_file, _, _, _) in enumerate(testset):
# Parse estimated pose from the input file.
pose_file, qw, qx, qy, qz, tx, ty, tz, _, _, _ = frame_poses[image_idx].split()
# Check that the files match.
assert Path(image_file).name == pose_file
# We do everything in np.
gt_pose = gt_pose.numpy()
# Convert quaternion to rotation matrix.
r_mat = Rotation.from_quat([float(x) for x in [qx, qy, qz, qw]]).as_matrix()
t_vec = np.array([float(x) for x in [tx, ty, tz]])
# We saved the inverse pose
estimated_pose_inv = np.eye(4)
estimated_pose_inv[:3, :3] = r_mat
estimated_pose_inv[:3, 3] = t_vec
# Pose we use for evaluation.
estimated_pose = np.linalg.inv(estimated_pose_inv)
# calculate pose errors
t_err = float(np.linalg.norm(gt_pose[0:3, 3] - estimated_pose[0:3, 3]))
gt_R = gt_pose[0:3, 0:3]
out_R = estimated_pose[0:3, 0:3]
r_err = np.matmul(out_R, np.transpose(gt_R))
r_err = cv2.Rodrigues(r_err)[0]
r_err = np.linalg.norm(r_err) * 180 / math.pi
_logger.info("Rotation Error: %.2fdeg, Translation Error: %.1fcm" % (r_err, t_err * 100))
# Save the errors.
rErrs.append(r_err)
tErrs.append(t_err * 100)
# Check various thresholds.
if r_err < 5 and t_err < 0.1: # 10cm/5deg
pct10_5 += 1
if r_err < 5 and t_err < 0.05: # 5cm/5deg
pct5 += 1
if r_err < 2 and t_err < 0.02: # 2cm/2deg
pct2 += 1
if r_err < 1 and t_err < 0.01: # 1cm/1deg
pct1 += 1
total_frames = len(rErrs)
assert total_frames == len(testset)
# Compute median errors.
tErrs.sort()
rErrs.sort()
median_idx = total_frames // 2
median_rErr = rErrs[median_idx]
median_tErr = tErrs[median_idx]
# Compute final metrics.
pct10_5 = pct10_5 / total_frames * 100
pct5 = pct5 / total_frames * 100
pct2 = pct2 / total_frames * 100
pct1 = pct1 / total_frames * 100
_logger.info("===================================================")
_logger.info("Test complete.")
_logger.info('Accuracy:')
_logger.info(f'\t10cm/5deg: {pct10_5:.1f}%')
_logger.info(f'\t5cm/5deg: {pct5:.1f}%')
_logger.info(f'\t2cm/2deg: {pct2:.1f}%')
_logger.info(f'\t1cm/1deg: {pct1:.1f}%')
_logger.info(f"Median Error: {median_rErr:.1f}deg, {median_tErr:.1f}cm")