-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathTartanVO.py
executable file
·239 lines (184 loc) · 10 KB
/
TartanVO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import torch
import torch.nn as nn
import cv2
import numpy as np
import pypose as pp
from Network.VONet import VONet
from dense_ba import scale_from_disp_flow
from Datasets.transformation import tartan2kitti_pypose, cvtSE3_pypose
np.set_printoptions(precision=4, suppress=True, threshold=10000)
class TartanVO(nn.Module):
def __init__(self, vo_model_name=None, pose_model_name=None, flow_model_name=None, stereo_model_name=None,
device_id=0, correct_scale=True, fix_parts=(), use_kitti_coord=True):
super(TartanVO, self).__init__()
self.device_id = device_id
self.correct_scale = correct_scale
self.use_kitti_coord = use_kitti_coord
# the output scale factor
self.pose_std = torch.tensor([0.13, 0.13, 0.13, 0.013, 0.013, 0.013]).cuda(self.device_id)
self.vonet = VONet(fix_parts=fix_parts)
# load the whole model
if vo_model_name is not None and vo_model_name != "":
# print('Loading vo network...')
self.load_model(self.vonet, vo_model_name)
# can override part of the model
if flow_model_name is not None and flow_model_name != "":
# print('Loading flow network...')
self.load_model(self.vonet.flowNet, flow_model_name)
if pose_model_name is not None and pose_model_name != "":
# print('Loading pose network...')
self.load_model(self.vonet.flowPoseNet, pose_model_name)
if stereo_model_name is not None and stereo_model_name != "":
# print('Loading stereo network...')
self.load_model(self.vonet.stereoNet, stereo_model_name)
self.vonet = self.vonet.cuda(self.device_id)
# self.vonet = torch.compile(self.vonet).cuda(self.device_id)
def load_model(self, model, modelname):
pretrain_dict = torch.load(modelname, map_location='cuda:%d'%self.device_id)
model_dict = model.state_dict()
loadin_dict = {}
for k, v in pretrain_dict.items():
for kk, vv in model_dict.items():
if (k.endswith(kk) or kk.endswith(k)) and v.size () == vv.size():
loadin_dict[kk] = v
# print('model_dict:')
# for kk in model_dict:
# print(kk, model_dict[kk].shape)
# print('pretrain:')
# for k in pretrain_dict:
# print(k, pretrain_dict[k].shape)
if 0 == len(loadin_dict):
raise Exception("Could not load model from %s." % (modelname), "load_model")
for kk in model_dict.keys():
if kk not in loadin_dict:
print("! [load_model] Key {} in model but not in {}!".format(k, modelname))
# if k.endswith('weight'):
# print('\tinit with kaiming_normal_')
# w = torch.rand_like(model_dict[k])
# nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')
# else:
# print('\tinit to zeros')
# w = torch.zeros_like(model_dict[k])
# loadin_dict[k] = w
model_dict.update(loadin_dict)
model.load_state_dict(model_dict)
del pretrain_dict
del loadin_dict
return model
def forward(self, sample, is_train=True, given_scale=None):
self.vonet.train() if is_train else self.vonet.eval()
with torch.set_grad_enabled(is_train):
############################## init inputs ######################################################################
nb = True
img0 = sample['img0'].cuda(self.device_id, non_blocking=nb)
img1 = sample['img1'].cuda(self.device_id, non_blocking=nb)
intrinsic = sample['intrinsic'].cuda(self.device_id, non_blocking=nb)
img0_norm = sample['img0_norm'].cuda(self.device_id, non_blocking=nb)
img0_r_norm = sample['img0_r_norm'].cuda(self.device_id, non_blocking=nb)
intrinsic_calib = sample['intrinsic_calib']
baseline = torch.linalg.norm(sample['extrinsic'][:, :3], dim=1)
precalc_flow = sample['flow'] if 'flow' in sample else None
############################## forward vonet ######################################################################
flow, disp, pose = self.vonet(img0, img1, img0_norm, img0_r_norm, intrinsic)
pose = pose * self.pose_std # The output is normalized during training, now scale it back
flow = flow.detach()
disp = disp.detach()
res = {}
if given_scale is not None:
trans = torch.nn.functional.normalize(pose[:, :3], dim=1) * given_scale.view(-1, 1)
pose = torch.cat([trans, pose[:, 3:]], dim=1)
elif not self.correct_scale:
############################## recover scale from stereo ######################################################################
if precalc_flow is None:
flow *= 5 # scale flow pridiction to pixel level
else:
flow = precalc_flow
disp *= 50/4 # scale disparity pridiction to pixel level
# from Datasets.utils import save_images, warp_images
# img0_warp = warp_images('temp', img1, flow)
# save_images('temp', img0, prefix='', suffix='_orig', fx=1/4, fy=1/4)
# save_images('temp', img1, prefix='', suffix='_x', fx=1/4, fy=1/4)
# img0_r = sample['img0_r']
# disp_warp = warp_images('temp2', img0_r, -disp)
# save_images('temp2', img0, prefix='', suffix='_orig', fx=1/4, fy=1/4)
# save_images('temp2', img0_r, prefix='', suffix='_x', fx=1/4, fy=1/4)
# print('flow', torch.min(flow), torch.max(flow), torch.mean(flow))
# print('disp', torch.min(disp), torch.max(disp), torch.mean(disp), torch.median(disp))
pose_ENU_SE3 = tartan2kitti_pypose(pose) # convert to ENU coordinate
############################## detect edges as mask ######################################################################
img0_np = img0.cpu().numpy()
img0_np = img0_np.transpose(0, 2, 3, 1)
img0_np = (img0_np*255).astype(np.uint8)
edge = []
for i in range(img0_np.shape[0]):
im = cv2.resize(img0_np[i], None, fx=1/4, fy=1/4)
e = cv2.Canny(im, 50, 100)
e = cv2.dilate(e, np.ones((5,5), np.uint8))
e = e > 0
edge.append(e)
edge = torch.from_numpy(np.stack(edge)).cuda(self.device_id)
############################## calculate scale ######################################################################
scale, mask, depth, depth_mask = [], [], [], []
for i in range(pose.shape[0]):
fx, fy, cx, cy = intrinsic_calib[i] / 4
disp_th_dict = {'kitti':5, 'tartanair':1, 'euroc':1}
s, z, m, dm = scale_from_disp_flow(disp[i], flow[i], pose_ENU_SE3[i], fx, fy, cx, cy, baseline[i],
mask=edge[i], disp_th=disp_th_dict[sample['datatype'][i]])
scale.append(s)
mask.append(m)
depth.append(z)
depth_mask.append(dm)
scale = torch.stack(scale)
mask = torch.stack(mask)
depth = torch.stack(depth)
depth_mask = torch.stack(depth_mask)
res['flow'] = flow
res['disp'] = disp
res['mask'] = mask
res['depth'] = depth
res['depth_mask'] = depth_mask
res['baseline'] = baseline[0]
res['intrinsic'] = intrinsic_calib[0] / 4
trans = torch.nn.functional.normalize(pose[:, :3], dim=1) * scale.view(-1, 1)
pose = torch.cat([trans, pose[:, 3:]], dim=1)
else:
############################## recover scale from GT ######################################################################
motion_tar = sample['motion']
scale = torch.norm(motion_tar[:, :3], dim=1).cuda(self.device_id)
trans = torch.nn.functional.normalize(pose[:, :3], dim=1) * scale.view(-1, 1)
pose = torch.cat([trans, pose[:, 3:]], dim=1)
if self.use_kitti_coord:
pose = tartan2kitti_pypose(pose)
else:
pose = cvtSE3_pypose(pose)
res['motion'] = pose
return res
def pred_flow(self, img0, img1):
img0 = img0.cuda(self.device_id)
img1 = img1.cuda(self.device_id)
batched = len(img0.shape) == 4
if not batched:
img0 = img0.unsqueeze(0)
img1 = img1.unsqueeze(0)
flow, _ = self.vonet.flowNet(torch.cat([img0, img1], dim=1))
flow = flow[0] * 5
if not batched:
flow = flow.squeeze(0)
return flow
def join_flow(self, flow_to_join):
height, width = flow_to_join[0].shape[-2:]
u_lin = torch.linspace(0, width-1, width)
v_lin = torch.linspace(0, height-1, height)
u, v = torch.meshgrid(u_lin, v_lin, indexing='xy')
uv = torch.stack([u, v]).cuda(self.device_id)
x = uv.unsqueeze(0)
flow_to_join.reverse()
for f in flow_to_join:
grid = (f + uv).permute(1, 2, 0).unsqueeze(0)
grid[..., 0] = grid[..., 0] / width * 2 - 1
grid[..., 1] = grid[..., 1] / height * 2 - 1
x = torch.nn.functional.grid_sample(x, grid, mode='bilinear', padding_mode='zeros', align_corners=False)
x = x.squeeze(0)
zero_mask = torch.logical_and(x[0]==0, x[1]==0).repeat(2, 1, 1)
x = torch.where(zero_mask, -1, x)
return x - uv