-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrack_once.py
194 lines (151 loc) · 7.5 KB
/
track_once.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
import os
import numpy as np
import multiprocessing
import pickle
from tqdm import tqdm
from functools import partial
from src.datasets.once.once_utils import aggregate_frames_in_sequences, build_frame_id_to_annotations_lookup
class Instance:
def __init__(self, instance_id, tracking, category, scene_id, frame_ids, boxes_3d):
self.instance_id = instance_id
self.tracking = tracking
self.category = category
self.scene_id = scene_id
self.frame_ids = []
self.boxes_3d = []
def track_instances(scene_id: str,
path_to_infos: str,
save_dir: str,
force_overwrite: bool):
with open(path_to_infos, 'rb') as file:
split_infos_pickle = pickle.load(file)
sequences_to_frames_lookup = aggregate_frames_in_sequences(split_infos_pickle)
frame_id_to_annotations_lookup = build_frame_id_to_annotations_lookup(split_infos_pickle)
instances_dict = {}
output_file_path = os.path.normpath(os.path.join(save_dir, f"once_raw_small_{scene_id}.pkl"))
if not force_overwrite and os.path.exists(output_file_path):
print(f"Skipping sequence: {scene_id}")
return
frames = sequences_to_frames_lookup[scene_id]
current_and_next_iterator = zip(frames, frames[1:])
scene_annotations = []
next_frame_data = []
for frame_id, next_frame_id in tqdm(current_and_next_iterator, desc=f"Sequence {scene_id}", total=len(frames)):
current_frame_data = frame_id_to_annotations_lookup[frame_id]
current_annotations = current_frame_data['annos']
current_categories = current_annotations['name']
current_boxes_3d = current_annotations['boxes_3d']
next_frame_data = frame_id_to_annotations_lookup[next_frame_id]
next_annotations = next_frame_data.get('annos', None)
next_categories = next_annotations['name']
next_boxes_3d = next_annotations['boxes_3d']
if not instances_dict:
# first frame
first_instance_ids = []
for idx, category in enumerate(current_categories):
first_instance_ids.append(len(instances_dict))
instance = Instance(instance_id=len(instances_dict),
tracking=[],
category=category,
scene_id=scene_id,
frame_ids=[],
boxes_3d=[])
instance.frame_ids.append(frame_id)
box = current_boxes_3d[idx]
instance.boxes_3d.append(box)
instances_dict[len(instances_dict)] = instance
# fill instance ids for the first frame with annotations
current_frame_data["annos"]["instance_ids"] = first_instance_ids
next_instance_ids = []
for idx, next_category in enumerate(next_categories):
next_box_3d = next_boxes_3d[idx]
next_center = [next_box_3d[0], next_box_3d[1], next_box_3d[2]]
matched_instance_id = None
min_distance = max(next_box_3d[3:6]) * 2
for instance_id, instance in instances_dict.items():
if frame_id in instance.frame_ids and instance.category == next_category:
current_box_3d = instance.boxes_3d[-1]
current_center = [
current_box_3d[0],
current_box_3d[1],
current_box_3d[2]]
distance = np.linalg.norm(
np.array(current_center) - np.array(next_center))
if distance < min_distance:
min_distance = distance
matched_instance_id = instance_id
if matched_instance_id is not None:
# matched
next_instance_ids.append(matched_instance_id)
instances_dict[matched_instance_id].frame_ids.append(
next_frame_id)
instances_dict[matched_instance_id].boxes_3d.append(
next_box_3d)
else:
# unmatched object
next_instance_ids.append(len(instances_dict))
new_instance = Instance(instance_id=len(instances_dict),
tracking=[],
category=next_category,
scene_id=scene_id,
frame_ids=[],
boxes_3d=[])
instances_dict[len(instances_dict)] = new_instance
new_instance.frame_ids.append(next_frame_id)
box = next_boxes_3d[idx]
new_instance.boxes_3d.append(box)
instances_dict[len(instances_dict)] = new_instance
next_frame_data["annos"]["instance_ids"] = next_instance_ids
scene_annotations.append(current_frame_data)
scene_annotations.append(next_frame_data)
try:
with open(output_file_path, 'wb') as destination_file:
pickle.dump(scene_annotations, destination_file)
except FileNotFoundError:
print(f"Source file not found.")
def __parallel_process(scenes,
path_to_infos,
save_dir,
force_overwrite,
num_workers):
print(f"Using {num_workers} CPUs.")
process_single_sequence = partial(
track_instances,
path_to_infos=path_to_infos,
save_dir=save_dir,
force_overwrite=force_overwrite
)
with multiprocessing.Pool(num_workers) as p:
list(tqdm(p.imap_unordered(process_single_sequence, scenes), total=len(scenes)))
def parse_arguments():
parser = argparse.ArgumentParser(description='patch scene arguments')
parser.add_argument('--split', type=str,
choices=['train', 'val', 'test', 'raw_small', 'raw_medium', 'raw_large'],
default=None, help='Once dataset split.')
parser.add_argument('--dataroot', type=str, default=None, help='Data root location.')
parser.add_argument('--save_dir', type=str, default='./out', help='Directory to save tracked files.')
parser.add_argument('--force_overwrite', action='store_true', help='Overwrite saved files.')
parser.add_argument('--num_workers', type=int, default=multiprocessing.cpu_count(),
help='Count of parallel workers.')
return parser.parse_args()
if __name__ == '__main__':
args = parse_arguments()
split = args.split
dataset_root = args.dataroot
save_dir_path = args.save_dir
overwrite = args.force_overwrite
assert dataset_root is not None, \
"Dataset root should be specified."
assert split is not None, \
"Split was not specified."
split_file = os.path.join(dataset_root, 'ImageSets', f"{split}.txt")
os.makedirs(save_dir_path, exist_ok=True)
scenes_path = os.path.join(dataset_root, 'data')
scenes = set(map(lambda x: x.strip(), open(split_file).readlines()))
pickled_infos_path = os.path.join(dataset_root, f'once_{split}.pkl')
__parallel_process(scenes,
pickled_infos_path,
save_dir_path,
overwrite,
args.num_workers)