-
Notifications
You must be signed in to change notification settings - Fork 0
/
audio.cpp
1271 lines (1028 loc) · 42.3 KB
/
audio.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// @Fixme: @Fixme: Right now, music is frame dependent
// @Fixme: @Fixme: Right now, music is frame dependent
// @Fixme: @Fixme: Right now, music is frame dependent
// @Fixme: @Fixme: Right now, music is frame dependent
#include "audio.h"
#include <miniaudio.h>
#include <dr_wav.h>
#include <dr_mp3.h>
#include <stb_vorbis.c>
#define AUDIO_DEVICE_CHANNELS 2
#define AUDIO_DEVICE_FORMAT ma_format_f32
#define AUDIO_DEVICE_SAMPLE_RATE 44100
#define IM_CALLOC(n, size) calloc(n, size)
#define IM_FREE(p) free(p)
#define TRACELOG(level, ...) printf(__VA_ARGS__)
#define array_size(arr) (sizeof(arr) / sizeof(arr[0]))
enum class Audio_File_Type : u32
{
NONE = 0, // No context loaded
WAV,
OGG,
MP3,
};
enum class LOG
{
ALL = 0,
TRACE,
DEBUG,
INFO,
WARNING,
ERROR,
FATAL,
NONE
};
enum class Audio_Buffer_Usage
{
STATIC = 0,
STREAM
};
// 2 sub-buffers because we are doing stereo
const u32 AUDIO_SUB_BUFFERS_SIZE = 2;
struct Audio_Buffer
{
ma_data_converter converter;
Audio_Callback* callback;
float volume;
float pitch;
float pan;
bool playing;
bool paused;
bool looping;
Audio_Buffer_Usage usage;
bool is_sub_buffer_processed[AUDIO_SUB_BUFFERS_SIZE];
uint32_t size_in_frames;
uint32_t frame_cursor_position;
uint32_t frames_processed;
uint8_t *data;
// linked-list like, pointers are items in the audio_buffer_pool
Audio_Buffer *next;
Audio_Buffer *prev;
};
constexpr u32 AUDIO_BUFFER_POOL_CAP = 32;
Audio_Buffer audio_buffer_pool[AUDIO_BUFFER_POOL_CAP];
ma_context audio_context;
ma_device audio_device;
ma_mutex audio_lock;
bool audio_is_ready;
u64 audio_pcm_buffer_size;
void *audio_pcm_buffer;
Audio_Buffer *audio_buffer_first; // first audio buffer in the list
Audio_Buffer *audio_buffer_last; // last audio buffer in the list
i32 audio_buffer_default_size = 0;
//
// helper functions
//
bool is_file_ext(const char *filename, const char *ext)
{
bool result = false;
// @Fixme: use our own method of file path searching and such
const char *file_ext = strrchr(filename, '.');
if (file_ext != NULL)
{
result = (strcmp(file_ext, ext) == 0);
}
return result;
}
void on_log(void *user_data, ma_uint32 level, const char *message)
{
// @Note: all log messages from miniaudio are errors
TRACELOG(LOG::WARNING, "miniaudio: %s\n", message);
}
// ----------------------------------------------------------------------
// AUDIO BUFFER FUNCTIONS
// ----------------------------------------------------------------------
bool is_audio_buffer_playing(Audio_Buffer *buffer);
// init new audio buffer (filled with silence)
Audio_Buffer *load_audio_buffer(ma_format format, ma_uint32 channels, ma_uint32 sample_rate,
ma_uint32 size_in_frames, Audio_Buffer_Usage usage);
// unload audio buffer
void unload_audio_buffer(Audio_Buffer *buffer);
// track audio buffer to linked list next position
void track_audio_buffer(Audio_Buffer *buffer);
// untrack audio buffer from linked list
void untrack_audio_buffer(Audio_Buffer *buffer);
// stop and audio buffer
void stop_audio_buffer(Audio_Buffer *buffer);
void play_audio_buffer(Audio_Buffer *buffer);
Audio_Buffer *allocate_audio_buffer()
{
u32 last_allocated = AUDIO_BUFFER_POOL_CAP - 1;
while (true)
{
last_allocated = (last_allocated + 1) % AUDIO_BUFFER_POOL_CAP;
// checking if the data is NULL
if (audio_buffer_pool[last_allocated].data == NULL)
{
break;
}
}
return &audio_buffer_pool[last_allocated];
}
bool is_audio_buffer_playing(Audio_Buffer *buffer)
{
return buffer != NULL && buffer->playing && !buffer->paused;
}
Audio_Buffer *load_audio_buffer(ma_format format, ma_uint32 channels, ma_uint32 sample_rate,
ma_uint32 size_in_frames, Audio_Buffer_Usage usage)
{
Audio_Buffer *audio_buffer = allocate_audio_buffer();
if (size_in_frames > 0)
{
audio_buffer->data = (uint8_t*)IM_CALLOC(size_in_frames * channels * ma_get_bytes_per_sample(format), 1);
}
// audio data runs througha format converter
ma_data_converter_config converter_config =
ma_data_converter_config_init(format, AUDIO_DEVICE_FORMAT,
channels, AUDIO_DEVICE_CHANNELS,
sample_rate, audio_device.sampleRate);
converter_config.allowDynamicSampleRate = true;
if (ma_data_converter_init(&converter_config, NULL, &audio_buffer->converter) != MA_SUCCESS)
{
TRACELOG(LOG::WARNING, "AUDIO: Failed to create data conversion pipeline\n");
IM_FREE(audio_buffer);
return NULL;
}
// init audio buffer values
audio_buffer->volume = 1.0f;
audio_buffer->pitch = 1.0f;
audio_buffer->pan = 0.5f;
audio_buffer->callback = NULL;
audio_buffer->playing = false;
audio_buffer->paused = false;
audio_buffer->looping = false;
audio_buffer->usage = usage;
audio_buffer->frame_cursor_position = 0;
audio_buffer->size_in_frames = size_in_frames;
track_audio_buffer(audio_buffer);
return audio_buffer;
}
void unload_audio_buffer(Audio_Buffer *buffer)
{
if (buffer != NULL)
{
ma_data_converter_uninit(&buffer->converter, NULL);
untrack_audio_buffer(buffer);
IM_FREE(buffer->data);
IM_FREE(buffer);
}
}
void track_audio_buffer(Audio_Buffer *buffer)
{
ma_mutex_lock(&audio_lock);
// not good, as this is not contiguous in memory so cache will miss cycle
if (audio_buffer_first == NULL)
{
audio_buffer_first = buffer;
}
else
{
audio_buffer_last->next = buffer;
buffer->prev = audio_buffer_last;
}
audio_buffer_last = buffer;
ma_mutex_unlock(&audio_lock);
}
// detach the current buffer from the track (linked list)
void untrack_audio_buffer(Audio_Buffer *buffer)
{
ma_mutex_lock(&audio_lock);
if (buffer->prev == NULL)
{
audio_buffer_first = buffer->next;
}
else
{
buffer->prev->next = buffer->next;
}
if (buffer->next == NULL)
{
audio_buffer_last = buffer->prev;
}
else
{
buffer->next->prev = buffer->prev;
}
buffer->prev = NULL;
buffer->next = NULL;
ma_mutex_lock(&audio_lock);
}
void stop_audio_buffer(Audio_Buffer *buffer)
{
if (buffer == NULL) return;
if (is_audio_buffer_playing(buffer))
{
buffer->playing = false;
buffer->paused = false;
buffer->frame_cursor_position = 0;
buffer->frames_processed = 0;
buffer->is_sub_buffer_processed[0] = true;
buffer->is_sub_buffer_processed[1] = true;
}
}
// play an audio buffer
// @Note:
// buffer is restarted to the start
void play_audio_buffer(Audio_Buffer *buffer)
{
if (buffer == NULL) return;
buffer->playing = true;
buffer->paused = false;
buffer->frame_cursor_position = 0;
}
// we read audio data from an Audio_Buffer object in internal format
ma_uint32 read_audio_buffer_frames_in_internal_format(Audio_Buffer *buffer, void *frames_out,
ma_uint32 frame_count)
{
// using audio buffer callback
if (buffer->callback)
{
buffer->callback(frames_out, frame_count);
buffer->frames_processed += frame_count;
return frame_count;
}
ma_uint32 sub_buffer_size_in_frames = (buffer->size_in_frames > 1) ?
(buffer->size_in_frames / 2) : buffer->size_in_frames;
ma_uint32 current_sub_buffer_index =
buffer->frame_cursor_position / sub_buffer_size_in_frames;
if (current_sub_buffer_index > 1)
{
return 0;
}
// another thread can update the processed state of buffers, so
// we take a copy here to try and avoid potential synchronization problems
bool is_sub_buffer_processed[2] = {0};
is_sub_buffer_processed[0] = buffer->is_sub_buffer_processed[0];
is_sub_buffer_processed[1] = buffer->is_sub_buffer_processed[1];
ma_uint32 frame_size_in_bytes = ma_get_bytes_per_frame(
buffer->converter.formatIn, buffer->converter.channelsIn);
// fill out every frame until we find a buffer that's marked as processed
// then fill the raminder with 0
ma_uint32 frames_read = 0;
while (true)
{
// for static buffer, we fill as much data as possible
// for streaming buffer, we fill half of the buffer that are processed
// the unprocessed halves must keep their audio data intact
if (buffer->usage == Audio_Buffer_Usage::STATIC)
{
if (frames_read >= frame_count)
{
break;
}
}
else
{
if (is_sub_buffer_processed[current_sub_buffer_index])
{
break;
}
}
ma_uint32 total_frames_remaining = frame_count - frames_read;
if (total_frames_remaining == 0)
{
break;
}
ma_uint32 frames_remaining_in_output_buffer;
if (buffer->usage == Audio_Buffer_Usage::STATIC)
{
frames_remaining_in_output_buffer =
buffer->size_in_frames - buffer->frame_cursor_position;
}
else
{
ma_uint32 first_frame_index_of_this_sub_buffer =
sub_buffer_size_in_frames * current_sub_buffer_index;
frames_remaining_in_output_buffer = sub_buffer_size_in_frames -
(buffer->frame_cursor_position - first_frame_index_of_this_sub_buffer);
}
ma_uint32 frames_to_read = total_frames_remaining;
if (frames_to_read > frames_remaining_in_output_buffer)
{
frames_to_read = frames_remaining_in_output_buffer;
}
memcpy((uint8_t*)frames_out + (frames_read * frame_size_in_bytes),
buffer->data + (buffer->frame_cursor_position * frame_size_in_bytes),
frames_to_read * frame_size_in_bytes);
buffer->frame_cursor_position =
(buffer->frame_cursor_position + frames_to_read) % buffer->size_in_frames;
frames_read += frames_to_read;
// if we've read to the end of the buffer,
// mark it as processed
if (frames_to_read == frames_remaining_in_output_buffer)
{
buffer->is_sub_buffer_processed[current_sub_buffer_index] = true;
is_sub_buffer_processed[current_sub_buffer_index] = true;
current_sub_buffer_index = (current_sub_buffer_index + 1) % 2;
// break from this loop if we're not looping
if (!buffer->looping)
{
stop_audio_buffer(buffer);
break;
}
}
}
// after we finished with the loop, we fill the excess with 0
ma_uint32 total_frames_remaining = frame_count - frames_read;
if (total_frames_remaining > 0)
{
memset((uint8_t*)frames_out + (frames_read * frame_size_in_bytes),
0,
total_frames_remaining * frame_size_in_bytes);
// @Note: For static buffers we can fill the remaining frames with silence for
// safety, but we don't want to report those frames as "read"
// The reason for this is that the caller uses the return value
// to know whether a non-looping sound has finished playback.
if (buffer->usage != Audio_Buffer_Usage::STATIC)
{
frames_read += total_frames_remaining;
}
}
return frames_read;
}
// ----------------------------------------------------------------------
// @Important:
// - our mixing function is simply an accumulation
// - all the mixing takes place here
// - this function will be called when miniaudio needs more data
// - sends audio data to device callback function
// ----------------------------------------------------------------------
void on_send_audio_data_to_device(ma_device *device, void *frames_out,
const void *frames_input, ma_uint32 frame_count)
{
memset(frames_out, 0, frame_count * device->playback.channels * ma_get_bytes_per_sample(device->playback.format));
// @Fixme: using mutex makes this not real-time
ma_mutex_lock(&audio_lock);
for (Audio_Buffer *buffer = audio_buffer_first;
buffer != NULL;
buffer = buffer->next)
{
// ignore stopped or paused sounds
if (!buffer->playing || buffer->paused)
{
continue;
}
ma_uint32 frames_read = 0;
while (true)
{
if (frames_read >= frame_count)
{
break;
}
// read as much data as we can from the stream
ma_uint32 frames_to_read = (frame_count - frames_read);
constexpr uint32_t TEMP_BUFFER_CAP = 1024;
while (frames_to_read > 0)
{
// frames out for stereo
float temp_buffer[TEMP_BUFFER_CAP] = {0};
ma_uint32 frames_to_read_right_now = frames_to_read;
if (frames_to_read_right_now > TEMP_BUFFER_CAP / AUDIO_DEVICE_CHANNELS)
{
frames_to_read_right_now = TEMP_BUFFER_CAP / AUDIO_DEVICE_CHANNELS;
}
// @Note: reads audio data from the buffer object in device mixing format
// data will be in a format appropriate for mixing
// ----------------------------------------
ma_uint32 frames_just_read;
{
// we continously convert the data from the buffer's internal format
// to the mixing format, which should be defined by the output format
// of the data converter
// do this until there are frames_to_read_right_now frames in the output
// @Important: NEVER READ MORE INPUT DATA THAN IS REQUIRED for the
// specified number of output frames.
// We use ma_data_converter_get_required_input_frame_count() to
// get enough frames.
constexpr size_t INPUT_BUFFER_CAP = 4096;
ma_uint8 input_buffer[INPUT_BUFFER_CAP] = {0};
const ma_uint32 INPUT_BUFFER_FRAME_CAP = sizeof(input_buffer) /
ma_get_bytes_per_frame(buffer->converter.formatIn,
buffer->converter.channelsIn);
ma_uint32 total_output_frames = 0;
while (total_output_frames < frames_to_read_right_now)
{
ma_uint64 output_frames_to_process_this_iteration =
frames_to_read_right_now - total_output_frames;
ma_uint64 input_frames_to_process_this_iteration = 0;
(void)ma_data_converter_get_required_input_frame_count(
&buffer->converter,
output_frames_to_process_this_iteration,
&input_frames_to_process_this_iteration);
if (input_frames_to_process_this_iteration > INPUT_BUFFER_FRAME_CAP)
{
input_frames_to_process_this_iteration = INPUT_BUFFER_FRAME_CAP;
}
float *running_frames_out =
temp_buffer + (total_output_frames * buffer->converter.channelsOut);
// convert the data to our mixing format
ma_uint64 output_frames_processed_this_iteration = output_frames_to_process_this_iteration;
ma_uint64 input_frames_processed_this_iteration =
read_audio_buffer_frames_in_internal_format(buffer, input_buffer,
static_cast<ma_uint32>(
input_frames_to_process_this_iteration));
ma_data_converter_process_pcm_frames(&buffer->converter,
input_buffer, &input_frames_processed_this_iteration,
running_frames_out,
&output_frames_processed_this_iteration);
total_output_frames += (ma_uint32)output_frames_processed_this_iteration; // Safe cast
if (input_frames_processed_this_iteration < input_frames_to_process_this_iteration)
{
break; // run out of buffer data
}
// ideally, this branch will never occur.
// this ensures that we get out of the loop
// when no input and no output frames are processed
if (input_frames_processed_this_iteration == 0 &&
output_frames_processed_this_iteration == 0)
{
break;
}
}
// assign value to the frames_just_read variable
frames_just_read = total_output_frames;
}
// ----------------------------------------
// if we read some frames in the earlier scope
if (frames_just_read > 0)
{
float *f32_frames_out = (float*)frames_out + (frames_read * audio_device.playback.channels);
float *f32_frames_in = temp_buffer;
ma_uint32 frame_count = frames_just_read;
// @Todo: might want to deal with processor later
// @Note: mix audio frames
{
const float LOCAL_VOLUME = buffer->volume;
const ma_uint32 CHANNELS = audio_device.playback.channels;
// @Note: if we consider panning
if (CHANNELS == 2)
{
// @Note: the length of the buffer is normalized,
// .i.e, [0.0f..1.0f]
const float LEFT = buffer->pan;
const float RIGHT = 1.0f - LEFT;
// @Note: fast sine approximation in [0..1] for pan law:
// y = 0.5f * x * (3 - x*x)
const float levels[2] = {
LOCAL_VOLUME * 0.5f * LEFT * (3.0f - LEFT * LEFT),
LOCAL_VOLUME * 0.5f * RIGHT * (3.0f - RIGHT * RIGHT)
};
float *frame_out = f32_frames_out;
const float *frame_in = f32_frames_in;
for (ma_uint32 frame = 0; frame < frame_count; ++frame)
{
frame_out[0] += frame_in[0] * levels[0];
frame_out[1] += frame_in[1] * levels[1];
// shift by two because we just assigned 2 entries
frame_out += 2;
frame_in += 2;
}
}
// @Note: if we don't consider panning
else
{
for (ma_uint32 frame = 0; frame < frame_count; ++frame)
{
for (ma_uint32 c = 0; c < CHANNELS; ++c)
{
float *frame_out = f32_frames_out + (frame * CHANNELS);
float *frame_in = f32_frames_in + (frame * CHANNELS);
// output = input * volume of the provided output (usually 0)
frame_out[c] += frame_in[c] * LOCAL_VOLUME;
}
}
}
}
frames_to_read -= frames_just_read;
frames_read += frames_just_read;
}
if (!buffer->playing)
{
frames_read = frame_count;
break;
}
// if we werene't able to read all the frames we requested,
// break because we run out of frames to read
if (frames_just_read < frames_to_read_right_now)
{
if (!buffer->looping)
{
stop_audio_buffer(buffer);
break;
}
else
{
// should never get here, because the looping will ensure that
// the data read will wrap around
// anyhow, if it hits here, move the cursor position back to the
// start and continue the loop
buffer->frame_cursor_position = 0;
continue;
}
}
}
// if we weren't able to read every frame we'll need to break from the loop
// not doing this could result in an infinite loop
if (frames_to_read > 0)
{
break;
}
}
}
// @Todo: deal with processors stuff here, later... (around line 2555 of raudio.c)
ma_mutex_unlock(&audio_lock);
}
// ----------------------------------------------------------------------
// AUDIO DEVICE MANAGEMENT FUNCTIONS
// ----------------------------------------------------------------------
void init_audio_device()
{
// audio context
ma_context_config context_config = ma_context_config_init();
ma_log_callback_init(on_log, NULL);
if (ma_context_init(NULL, 0, &context_config, &audio_context) != MA_SUCCESS)
{
TRACELOG(LOG::WARNING, "AUDIO: Failed to initialized context\n");
return;
}
// audio device
// @Note: using the default device. format is f32 because it simplifies mixing.
ma_device_config config = ma_device_config_init(ma_device_type_playback); // using playback type
config.playback.pDeviceID = NULL; // set NULL to use the default playback AUDIO
config.playback.format = AUDIO_DEVICE_FORMAT;
config.playback.channels = AUDIO_DEVICE_CHANNELS;
config.capture.pDeviceID = NULL; // set NULL for the default capture AUDIO
config.capture.format = ma_format_s16; // using signed 16 bits format (enforce every file data to this)
config.capture.channels = 1;
config.sampleRate = AUDIO_DEVICE_SAMPLE_RATE;
config.dataCallback = on_send_audio_data_to_device;
config.pUserData = NULL;
if (ma_device_init(&audio_context, &config, &audio_device) != MA_SUCCESS)
{
TRACELOG(LOG::WARNING, "AUDIO: Failed to initialized playback device\n");
ma_context_uninit(&audio_context);
return;
}
// mixing happens on a separate thread which means we need to synchronize.
// @Fixme: USING A MUTEX HERE to make things simple, but may want to look at something
// a bit smarter later on to keep everything real-time, if that's necessary.
if (ma_mutex_init(&audio_lock) != MA_SUCCESS)
{
TRACELOG(LOG::WARNING, "AUDIO: Failed to create mutex for mixing\n");
ma_device_uninit(&audio_device);
ma_context_uninit(&audio_context);
return;
}
// @Fixme: CURRENTLY KEEP THE DEVICE RUNNING THE WHOLE TIME.
// might want to do something a bit smarter by only run the device if there is at least one sound being played
if (ma_device_start(&audio_device) != MA_SUCCESS)
{
TRACELOG(LOG::WARNING, "AUDIO: Failed to start playback device\n");
ma_device_uninit(&audio_device);
ma_context_uninit(&audio_context);
return;
}
TRACELOG(LOG::INFO, "AUDIO: Device initialized successfully\n");
TRACELOG(LOG::INFO, " > Backend: miniaudio / %s\n", ma_get_backend_name(audio_context.backend));
TRACELOG(LOG::INFO, " > Format: %s -> %s\n", ma_get_format_name(audio_device.playback.format),
ma_get_format_name(audio_device.playback.internalFormat));
TRACELOG(LOG::INFO, " > Channels: %d -> %d\n", audio_device.playback.channels,
audio_device.playback.internalChannels);
TRACELOG(LOG::INFO, " > Sample rate: %d -> %d\n", audio_device.sampleRate,
audio_device.playback.internalSampleRate);
TRACELOG(LOG::INFO, " > Periods size: %d\n", audio_device.playback.internalPeriodSizeInFrames *
audio_device.playback.internalPeriods);
// turn on the green light for other functions
audio_is_ready = true;
}
void close_audio_device()
{
if (audio_is_ready)
{
ma_mutex_uninit(&audio_lock);
ma_device_uninit(&audio_device);
ma_context_uninit(&audio_context);
audio_is_ready = false;
IM_FREE(audio_pcm_buffer);
audio_pcm_buffer = NULL;
audio_pcm_buffer_size = 0;
TRACELOG(LOG::INFO, "AUDIO: Device closed successfully\n");
}
else
{
TRACELOG(LOG::WARNING, "AUDIO: Device could not be closed, not currently initialized\n");
}
}
// ----------------------------------------------------------------------
// AUDIO STREAM MANAGEMENT FUNCTIONS
// ----------------------------------------------------------------------
// load audio stream (to stream audio pcm data)
Audio_Stream load_audio_stream(uint32_t sample_rate, uint32_t sample_size, uint32_t channels)
{
Audio_Stream stream = {0};
stream.sample_rate = sample_rate;
stream.sample_size = sample_size;
stream.channels = channels;
ma_format format_in = sample_size == 8 ? ma_format_u8 // use unsigned 8-bit for sample size 8
: sample_size == 16 ? ma_format_s16 // use signed 16-bit for sample size 16
: ma_format_f32; // everything else uses floating point 32-bit
// size of a streaming buffer must be at least double the size of a period
uint32_t period_size = audio_device.playback.internalPeriodSizeInFrames;
// if the buffer is not set, compute one that would give us
// a buffer good enough for a decent frame rate
constexpr uint32_t SUBSTITUTE_FRAME_RATE = 30;
uint32_t sub_buffer_size = audio_buffer_default_size == 0 ?
audio_device.sampleRate / SUBSTITUTE_FRAME_RATE
: audio_buffer_default_size;
if (sub_buffer_size < period_size)
{
sub_buffer_size = period_size;
}
// create a DOUBLE AUDIO BUFFER of defined size
stream.buffer = load_audio_buffer(format_in, stream.channels, stream.sample_rate,
sub_buffer_size * 2, Audio_Buffer_Usage::STREAM);
if (stream.buffer != NULL)
{
stream.buffer->looping = true; // loop by default for streaming buffers
TRACELOG(LOG::INFO, "STREAM: Initialized successfully (%i Hz, %i bit, %s)\n",
stream.sample_rate, stream.sample_size,
stream.channels == 1 ? "Mono" : "Stereo");
}
else
{
TRACELOG(LOG::WARNING, "STREAM: Failed to load audio buffer, stream could not be created\n");
}
return stream;
}
// unload audio stream and free memory
void unload_audio_stream(Audio_Stream stream)
{
unload_audio_buffer(stream.buffer);
TRACELOG(LOG::INFO, "STREAM: Unloaded audio stream data from RAM\n");
}
// play audio stream
// @Note: this function resets the cursor position of the audio stream's buffer
void play_audio_stream(Audio_Stream stream)
{
play_audio_buffer(stream.buffer);
}
// update auduio stream's buffers with data
// @Note:
// if there are multiple buffers in one stream source:
// - only update one buffer of the stream source: dequeue the buffer -> update it -> enqueue it back
// - to dequeue a buffer, it needs to be processed. so check it with is_audio_stream_processed()
void update_audio_stream(Audio_Stream stream, void *data, uint32_t frame_count)
{
if (stream.buffer != NULL)
{
// @Fixme: what about mono-channels???
// @Fixme: what about mono-channels???
// @Fixme: what about mono-channels???
// @Note: check if buffer is processed
if (stream.buffer->is_sub_buffer_processed[0] || stream.buffer->is_sub_buffer_processed[1])
{
ma_uint32 sub_buffer_to_update = 0;
if (stream.buffer->is_sub_buffer_processed[0] && stream.buffer->is_sub_buffer_processed[1])
{
// both buffers are available for updating.
// update the first one and make sure the cursor is moved back to the front.
sub_buffer_to_update = 0;
stream.buffer->frame_cursor_position = 0;
}
else
{
// just update whichever sub-buffer is processed.
sub_buffer_to_update = (stream.buffer->is_sub_buffer_processed[0])? 0 : 1;
}
ma_uint32 sub_buffer_size_in_frames = stream.buffer->size_in_frames / 2;
uint8_t *sub_buffer = stream.buffer->data + ((sub_buffer_size_in_frames * stream.channels *
(stream.sample_size / 8)) * sub_buffer_to_update);
// total frames processed in buffer is always the complete size, filled with 0 if required
stream.buffer->frames_processed += sub_buffer_size_in_frames;
// does this API expect a whole buffer to be updated in one go?
// assuming so, but if not will need to change this logic.
if (sub_buffer_size_in_frames >= (ma_uint32)frame_count)
{
ma_uint32 frames_to_write = (ma_uint32)frame_count;
ma_uint32 bytes_to_write = frames_to_write * stream.channels * (stream.sample_size / 8);
memcpy(sub_buffer, data, bytes_to_write);
// any leftover frames should be filled with zeros.
ma_uint32 left_over_frame_count = sub_buffer_size_in_frames - frames_to_write;
if (left_over_frame_count > 0)
{
memset(sub_buffer + bytes_to_write, 0,
left_over_frame_count * stream.channels * (stream.sample_size / 8));
}
stream.buffer->is_sub_buffer_processed[sub_buffer_to_update] = false;
}
else
{
TRACELOG(LOG_WARNING, "STREAM: Attempting to write too many frames to buffer\n");
}
}
else
{
TRACELOG(LOG_WARNING, "STREAM: Buffer not available for updating\n");
}
}
}
void stop_audio_stream(Audio_Stream stream)
{
stop_audio_buffer(stream.buffer);
}
// ----------------------------------------------------------------------
// MUSIC MANAGEMENT FUNCTIONS
// ----------------------------------------------------------------------
// load music stream (chunks at a time)
Music load_music_stream(const char *filename)
{
Music music = {0};
bool music_loaded = false;
// WAV files
if (is_file_ext(filename, ".wav"))
{
drwav *context_wav = (drwav*)IM_CALLOC(1, sizeof(drwav));
bool success = drwav_init_file(context_wav, filename, NULL);
music.context_type = Audio_File_Type::WAV;
music.context_data = context_wav;
if (success)
{
int32_t sample_size = context_wav->bitsPerSample;
if (sample_size == 24)
{
sample_size = 16; // forced conversion to s16 in update_music_stream()
}
music.stream = load_audio_stream(context_wav->sampleRate, sample_size, context_wav->channels);
music.frame_count = (uint32_t)context_wav->totalPCMFrameCount;
music.looping = true;
music_loaded = true;
}
}
// OGG files
else if (is_file_ext(filename, ".ogg"))
{
music.context_type = Audio_File_Type::OGG;
music.context_data = stb_vorbis_open_filename(filename, NULL, NULL);
if (music.context_data != NULL)
{
stb_vorbis_info info = stb_vorbis_get_info(static_cast<stb_vorbis*>(music.context_data));
// OGG bit rate defaults to 16 bit,
// this is enough for compressed format (which is s16)
music.stream = load_audio_stream(info.sample_rate, 16, info.channels);
// @Warning: re-read this part of the code
music.frame_count = (uint32_t)stb_vorbis_stream_length_in_samples((stb_vorbis*)music.context_data);
music.looping = true; // enable looping
music_loaded = true;
}
}
// MP3 files
else if (is_file_ext(filename, ".mp3"))
{
drmp3 *context_mp3 = (drmp3*)IM_CALLOC(1, sizeof(drmp3));
int32_t result = drmp3_init_file(context_mp3, filename, NULL);
music.context_type = Audio_File_Type::MP3;
music.context_data = context_mp3;
if (result > 0)
{
music.stream = load_audio_stream(context_mp3->sampleRate, 32, context_mp3->channels);
music.frame_count = (uint32_t)drmp3_get_pcm_frame_count(context_mp3);
music.looping = true;
music_loaded = true;
}
}
else
{