-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCSP.py
157 lines (131 loc) · 5.57 KB
/
CSP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import csv
import operator
import re
import copy
import sys
from operator import attrgetter
#####################
# Parameters
#####################
result_file_name = 'Result.csv'
#####################
# Start process
#####################
def main(code_smell_file_name, ia_file_name, alpha=1, cut_point='40'):
code_smells = get_code_smells_from_csv_file(code_smell_file_name)
code_smells.sort(key=lambda x: int(x.severity), reverse=True)
scored_code_smells = calculate_cri(code_smells, ia_file_name, cut_point)
scored_code_smells = calculate_ranking(scored_code_smells, alpha)
scored_code_smells.sort(key=lambda x: x.ranking, reverse=True)
write_code_smells_to_csv_file(scored_code_smells, result_file_name)
print("Prioritizing completed !")
class CodeSmell(object):
def __init__(self, smell_id=None, severity=None, class_name=None, package_name=None,
smell_type=None, ranking=0, cri=0, n_cri=0, n_severity=0):
self.smell_id = smell_id
self.ranking = ranking
self.cri = cri
self.severity = severity
self.class_name = class_name
self.package_name = package_name
self.smell_type = smell_type
self.matched = False
self.n_cri = n_cri
self.n_severity = n_severity
class ImpactAnalysis(object):
def __init__(self, issue_id=None):
self.issue_id = issue_id
self.data = []
def write_code_smells_to_csv_file(code_smells, csv_file_name):
code_smells.sort(key=operator.attrgetter('ranking'), reverse=True)
csv_file = open(csv_file_name, 'w')
try:
fieldnames = ('Smell ID', 'Ranking', 'CRI', 'Severity', 'Class Name', 'Package Name', 'Smell Type')
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
headers = dict((n, n) for n in fieldnames)
writer.writerow(headers)
for code_smell in code_smells:
writer.writerow({'Smell ID': code_smell.smell_id,
'Ranking': code_smell.ranking,
'CRI': code_smell.cri,
'Severity': code_smell.severity,
'Class Name': code_smell.class_name,
'Package Name': code_smell.package_name,
'Smell Type': code_smell.smell_type,
})
finally:
csv_file.close()
def calculate_cri(code_smells, ia_file_name, cut_point):
scored_code_smells = copy.deepcopy(code_smells)
impact_analysis_input_file = open(ia_file_name, 'rU')
impact_analyses = []
rows = []
try:
reader = csv.reader(impact_analysis_input_file)
for row in reader:
rows.append(row)
finally:
impact_analysis_input_file.close()
ia_result = None
for row in rows:
if not ia_result:
ia_result = ImpactAnalysis(row[0])
elif row[0] != ia_result.issue_id:
impact_analyses.append(ia_result)
ia_result = ImpactAnalysis(row[0])
ia_result.data.append([row[1], row[2]])
impact_analyses.append(ia_result)
# Scoring
for impact_analysis in impact_analyses:
for ia_class_name in impact_analysis.data:
# ignore [] and <> in impact analysis
ia_class_name[0] = re.sub('\[\]', '', ia_class_name[0])
while '<' in ia_class_name[0]:
ia_class_name[0] = re.sub('<.[^<|>]*>', '', ia_class_name[0])
for code_smell in scored_code_smells:
code_smell_full_name = str(code_smell.package_name) + '.' + str(code_smell.class_name)
code_smell_full_name = code_smell_full_name.split('/')[-1]
for impact_analysis in impact_analyses:
if cut_point == 'all':
length = len(impact_analysis.data)
else:
length = int(cut_point)
for ia_class_name in impact_analysis.data[:length]:
if code_smell_full_name == ia_class_name[0]:
code_smell.cri += float(ia_class_name[1])
return scored_code_smells
def calculate_ranking(code_smells, alpha):
scored_code_smells = copy.deepcopy(code_smells)
max_cri = max(scored_code_smells, key=attrgetter('cri')).cri
min_cri = min(scored_code_smells, key=attrgetter('cri')).cri
max_severity = max(scored_code_smells, key=attrgetter('severity')).severity
min_severity = min(scored_code_smells, key=attrgetter('severity')).severity
for code_smell in scored_code_smells:
if max_cri == min_cri:
code_smell.n_cri = 0
else:
code_smell.n_cri = float((code_smell.cri - min_cri)) / float((max_cri - min_cri))
code_smell.n_severity = (float(code_smell.severity) - float(min_severity)) / (float(max_severity) - float(min_severity))
code_smell.ranking = (alpha * code_smell.n_cri) + ((1 - alpha) * code_smell.n_severity)
return scored_code_smells
def get_code_smells_from_csv_file(csv_file_name):
code_smells = []
rows = []
csv_input_file = open(csv_file_name, 'rU')
try:
next(csv_input_file) # skip header row
reader = csv.reader(csv_input_file)
for row in reader:
rows.append(row)
finally:
csv_input_file.close()
for row in rows:
code_smells.append(CodeSmell(row[0], row[1], row[2], row[3], row[4]))
return code_smells
if __name__ == '__main__':
if len(sys.argv) == 3:
main(sys.argv[1], sys.argv[2])
elif len(sys.argv) == 4:
main(sys.argv[1], sys.argv[2], float(sys.argv[3]))
elif len(sys.argv) == 5:
main(sys.argv[1], sys.argv[2], float(sys.argv[3]), sys.argv[4])