-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasource.py
300 lines (271 loc) · 9.76 KB
/
datasource.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from pyelasticsearch import ElasticSearch
from requests import get as rget
from datetime import datetime, timedelta
from pandas import DataFrame
from json import dumps
import time
class ElasticQuery:
def __init__(self, schema):
self.max_timestamp = schema['__global']['times']['max']
self.min_timestamp = schema['__global']['times']['min']
self.max_time = datetime.fromtimestamp(self.max_timestamp)
self.min_time = datetime.fromtimestamp(self.min_timestamp)
self.datekeys = [k for k in schema.keys() if not k == '__global' and schema[k]['type'] == 'date']
gmin = self.min_time
gmax = self.max_time
gwindow = (gmax-gmin).days
self.interval = max(gwindow/1000,1)
def _ors(self, ors):
return {"or": ors}
def _ands(self, ands):
return {"and": ands}
def _rangequery(self, field, args):
bounds = {
'from': (self.min_time-timedelta(days=1)).strftime('%Y-%m-%d'),
'to': (self.max_time+timedelta(days=1)).strftime('%Y-%m-%d')
}
bounds.update(args)
timerange = {}
timerange[field] = bounds
return timerange
def _rangeagg(self, field, interval):
return {
"date_histogram": {
"field": field,
"interval": "{0}d".format(interval)
}
}
def _matchquery(self, field, terms):
def _filter(field, value):
match = {}
match[field] = value
return {
"fquery": {
"query": {
"match": match
},
"_cache": True
}
}
if len(terms) == 1:
return _filter(field, terms[0])
else:
ors = []
for value in terms:
ors.append(_filter(field, value))
return {"or": ors}
def _searchquery(self, field, search):
s = {}
s[field] = [search]
return {
"prefix": s,
}
def _build_qs(self, args):
queries = []
aggs = {}
interval = self.interval
for key, value in args.iteritems():
if isinstance(value, dict):
if 'from' in value.keys() or 'to' in value.keys():
timerange = self._rangequery(key, value)
queries.append({"range": timerange})
else:
# TODO
pass
elif isinstance(value, list):
match = self._matchquery(key, value)
queries.append(match)
elif isinstance(value, str) or isinstance(value, unicode):
search = self._searchquery(key, value)
queries.append(search)
for key in self.datekeys:
aggs[key+'_hist'] = self._rangeagg(key, interval)
filter = {}
if len(queries) == 0:
filter = {"match_all": {}}
elif len(queries) == 1:
filter = queries[0]
else:
filter = {"and": queries}
qs = {
"query": {
"filtered": {
"query": {
"match_all": {}
},
"filter": filter
}
}
}
if len(aggs) > 0:
qs["aggregations"] = aggs
return qs
def _parse_hist(self, aggs):
hist = {}
for agg in aggs:
bucket = aggs[agg]['buckets']
key = agg.split('_hist')[0]
for bin in bucket:
if not hist.get(bin['key']):
hist[bin['key']] = {k:0 for k in self.datekeys+['bottom', 'left', 'right', 'max']}
hist[bin['key']][key] = bin['doc_count']
hist[bin['key']]['left'] = (bin['key'])-(self.interval/2)
hist[bin['key']]['right'] = (bin['key'])+(self.interval/2)
cells = {k:[] for k in ['bottom', 'left', 'right']+self.datekeys}
cols = cells.keys()
cells['date'] = []
for date in sorted(hist.keys()):
cells['date'].append(date)
for col in cols:
cells[col].append(hist[date][col])
gmax_height = 0
for col in self.datekeys:
gmax_height = max([gmax_height]+cells[col])
cells['max'] = [gmax_height*1.25]*len(cells['date'])
for col in self.datekeys:
max_height = float(max(cells[col])) if len(cells[col]) > 0 else 0
density = '{0}_density'.format(col)
cells[density] = []
for i in range(len(cells['date'])):
cells[density].append(((cells[col][i]/max_height)*0.1))
return cells
def _parse_hits(self, hits):
data = {}
if len(hits) > 0:
keys = hits[0].keys()
data = {k:[] for k in keys+['show']}
for doc in hits:
doc['show'] = dumps(doc)
for key,value in doc.iteritems():
data[key].append(value)
return data
def update(self, es, index, args={}):
qs = self._build_qs(args)
print dumps(qs)+'\n'
t = time.time()
res = es.search(qs, index=index)
difference = time.time()-t
es.index('bokeh_logs', 'log', {
'query': dumps(qs),
'took': difference
})
hits = [h['_source'] for h in res['hits']['hits']]
hit_count = res['hits']['total']
aggs = res.get('aggregations') or []
cells = self._parse_hist(aggs)
data = self._parse_hits(hits)
ret = {
'hits': hit_count,
'hist': cells,
'data': data,
}
return ret
class ElasticDS:
def __init__(self, index='bokeshif'):
self._cache = {}
self.es = ElasticSearch('http://localhost:9200')
self.index = index
schema = self.get_schema()
self.query = ElasticQuery(schema)
def get_schema(self):
if self._cache.get('schema'):
return self._cache['schema']
global es
schema = {}
res = rget('http://localhost:9200/{0}/_mapping'.format(self.index)).json()
schema = res[self.index]['mappings']['seed']['properties']
subset = {k:v for k,v in schema.iteritems() if v['type'] == 'date'}
datekeys = subset.keys()
maxes = []
mins = []
aggs = {}
for key in datekeys:
aggs['max_'+key] = {
"max": {
"field": key
}
}
aggs['min_'+key] = {
"min": {
"field": key
}
}
subset = {k:v for k,v in schema.iteritems() if v['type'] == 'string'}
stringkeys = subset.keys()
for key in stringkeys:
aggs[key+'_cats'] = {
"terms": {
"field": key
}
}
query = {
"aggs": aggs,
"size": 0
}
print dumps(query)
res = self.es.search(query, index=self.index)
aggs = res['aggregations']
for key in datekeys:
maxes.append(aggs['max_'+key]['value'])
mins.append(aggs['min_'+key]['value'])
schema['__global'] = {
'times': {
'max': max(maxes)/1000,
'min': min(mins)/1000
}
}
for key in stringkeys:
qs = {
"query": {
"filtered": {
"query": {
"match_all": {}
},
"filter": {
"script": {
"script": unicode("doc['{0}'].values.size() > 1".format(key))
}
}
}
}
}
res = self.es.count(qs, index=self.index)
if (res.get('count') or 0) == 0:
# categorical
schema[key]['cats'] = [b['key'] for b in aggs[key+'_cats']['buckets']]
else:
# text
schema[key]['type'] = 'text'
schema[key]['cats'] = [b['key'] for b in aggs[key+'_cats']['buckets']]
res = rget('http://localhost:9200/{0}/_count'.format(self.index))
schema['__global']['size'] = res.json().get('count') or 0
self._cache['schema'] = schema
return schema
def get_data(self, args={}):
if len(args) == 0 and self._cache.get('data'):
return self._cache['data']
ret = self.query.update(self.es, self.index, args)
if len(args) == 0:
self._cache['data'] = ret
return ret
def get_data_frame(self):
res = self.get_data()
hist = DataFrame.from_dict(res['hist'])
return hist
@property
def domain(self):
schema = self.get_schema()
gtime = schema['__global']['times']
return [gtime['min'], gtime['max']]
@property
def date_columns(self):
schema = self.get_schema()
return [k for k in schema.keys() if not k == '__global' and schema[k]['type'] == 'date']
@property
def string_columns(self):
schema = self.get_schema()
return [k for k in schema.keys() if not k == '__global' and schema[k]['type'] == 'string']
@property
def columns(self):
schema = self.get_schema()
return [k for k in schema.keys() if not k == '__global']