-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain.py
80 lines (61 loc) · 2.94 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
# Define paths
train_dir = 'path_to_train_directory'
val_dir = 'path_to_validation_directory'
test_dir = 'path_to_test_directory'
# Data augmentation for training data
train_datagen = ImageDataGenerator(rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# Only rescale for validation and test data
val_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
# Create data generators
train_generator = train_datagen.flow_from_directory(train_dir,
target_size=(224, 224),
batch_size=32,
class_mode='categorical')
validation_generator = val_datagen.flow_from_directory(val_dir,
target_size=(224, 224),
batch_size=32,
class_mode='categorical')
test_generator = test_datagen.flow_from_directory(test_dir,
target_size=(224, 224),
batch_size=32,
class_mode='categorical')
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Flatten(),
Dense(512, activation='relu'),
Dropout(0.5),
Dense(3, activation='softmax') # 3 classes: benign, malignant, normal
])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_generator,
epochs=50,
validation_data=validation_generator)
model.save('breast_cancer_ultrasound_model.h5')
test_loss, test_acc = model.evaluate(test_generator)
print(f'Test accuracy: {test_acc}')
from sklearn.metrics import classification_report, confusion_matrix
import numpy as np
# Get the true labels and predictions
Y_pred = model.predict(test_generator)
y_pred = np.argmax(Y_pred, axis=1)
print('Confusion Matrix')
print(confusion_matrix(test_generator.classes, y_pred))
print('Classification Report')
target_names = ['benign', 'malignant', 'normal']
print(classification_report(test_generator.classes, y_pred, target_names=target_names))