forked from KhronosGroup/Vulkan-ValidationLayers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gpu_utils.h
458 lines (416 loc) · 25.3 KB
/
gpu_utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/* Copyright (c) 2020-2021 The Khronos Group Inc.
* Copyright (c) 2020-2021 Valve Corporation
* Copyright (c) 2020-2021 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Tony Barbour <[email protected]>
*/
#pragma once
#include "chassis.h"
#include "shader_validation.h"
#include "cmd_buffer_state.h"
class QUEUE_STATE;
class UtilDescriptorSetManager {
public:
UtilDescriptorSetManager(VkDevice device, uint32_t numBindingsInSet);
~UtilDescriptorSetManager();
VkResult GetDescriptorSet(VkDescriptorPool *desc_pool, VkDescriptorSetLayout ds_layout, VkDescriptorSet *desc_sets);
VkResult GetDescriptorSets(uint32_t count, VkDescriptorPool *pool, VkDescriptorSetLayout ds_layout,
std::vector<VkDescriptorSet> *desc_sets);
void PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set);
private:
static const uint32_t kItemsPerChunk = 512;
struct PoolTracker {
uint32_t size;
uint32_t used;
};
VkDevice device;
uint32_t numBindingsInSet;
layer_data::unordered_map<VkDescriptorPool, struct PoolTracker> desc_pool_map_;
};
struct UtilQueueBarrierCommandInfo {
VkCommandPool barrier_command_pool = VK_NULL_HANDLE;
VkCommandBuffer barrier_command_buffer = VK_NULL_HANDLE;
};
VkResult UtilInitializeVma(VkPhysicalDevice physical_device, VkDevice device, VmaAllocator *pAllocator);
void UtilPreCallRecordCreateDevice(VkPhysicalDevice gpu, safe_VkDeviceCreateInfo *modified_create_info,
VkPhysicalDeviceFeatures supported_features, VkPhysicalDeviceFeatures desired_features);
template <typename ObjectType>
void UtilPostCallRecordCreateDevice(const VkDeviceCreateInfo *pCreateInfo, std::vector<VkDescriptorSetLayoutBinding> bindings,
ObjectType *object_ptr, VkPhysicalDeviceProperties physical_device_properties) {
// If api version 1.1 or later, SetDeviceLoaderData will be in the loader
auto chain_info = get_chain_info(pCreateInfo, VK_LOADER_DATA_CALLBACK);
assert(chain_info->u.pfnSetDeviceLoaderData);
object_ptr->vkSetDeviceLoaderData = chain_info->u.pfnSetDeviceLoaderData;
// Some devices have extremely high limits here, so set a reasonable max because we have to pad
// the pipeline layout with dummy descriptor set layouts.
object_ptr->adjusted_max_desc_sets = physical_device_properties.limits.maxBoundDescriptorSets;
object_ptr->adjusted_max_desc_sets = std::min(33U, object_ptr->adjusted_max_desc_sets);
// We can't do anything if there is only one.
// Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves.
if (object_ptr->adjusted_max_desc_sets == 1) {
object_ptr->ReportSetupProblem(object_ptr->device, "Device can bind only a single descriptor set.");
object_ptr->aborted = true;
return;
}
object_ptr->desc_set_bind_index = object_ptr->adjusted_max_desc_sets - 1;
VkResult result1 = UtilInitializeVma(object_ptr->physicalDevice, object_ptr->device, &object_ptr->vmaAllocator);
assert(result1 == VK_SUCCESS);
std::unique_ptr<UtilDescriptorSetManager> desc_set_manager(
new UtilDescriptorSetManager(object_ptr->device, static_cast<uint32_t>(bindings.size())));
const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0,
static_cast<uint32_t>(bindings.size()), bindings.data()};
const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, 0,
NULL};
result1 = DispatchCreateDescriptorSetLayout(object_ptr->device, &debug_desc_layout_info, NULL, &object_ptr->debug_desc_layout);
// This is a layout used to "pad" a pipeline layout to fill in any gaps to the selected bind index.
VkResult result2 =
DispatchCreateDescriptorSetLayout(object_ptr->device, &dummy_desc_layout_info, NULL, &object_ptr->dummy_desc_layout);
assert((result1 == VK_SUCCESS) && (result2 == VK_SUCCESS));
if ((result1 != VK_SUCCESS) || (result2 != VK_SUCCESS)) {
object_ptr->ReportSetupProblem(object_ptr->device, "Unable to create descriptor set layout.");
if (result1 == VK_SUCCESS) {
DispatchDestroyDescriptorSetLayout(object_ptr->device, object_ptr->debug_desc_layout, NULL);
}
if (result2 == VK_SUCCESS) {
DispatchDestroyDescriptorSetLayout(object_ptr->device, object_ptr->dummy_desc_layout, NULL);
}
object_ptr->debug_desc_layout = VK_NULL_HANDLE;
object_ptr->dummy_desc_layout = VK_NULL_HANDLE;
object_ptr->aborted = true;
return;
}
object_ptr->desc_set_manager = std::move(desc_set_manager);
}
template <typename ObjectType>
void UtilPreCallRecordDestroyDevice(ObjectType *object_ptr) {
for (auto &queue_barrier_command_info_kv : object_ptr->queue_barrier_command_infos) {
UtilQueueBarrierCommandInfo &queue_barrier_command_info = queue_barrier_command_info_kv.second;
DispatchFreeCommandBuffers(object_ptr->device, queue_barrier_command_info.barrier_command_pool, 1,
&queue_barrier_command_info.barrier_command_buffer);
queue_barrier_command_info.barrier_command_buffer = VK_NULL_HANDLE;
DispatchDestroyCommandPool(object_ptr->device, queue_barrier_command_info.barrier_command_pool, NULL);
queue_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
}
object_ptr->queue_barrier_command_infos.clear();
if (object_ptr->debug_desc_layout) {
DispatchDestroyDescriptorSetLayout(object_ptr->device, object_ptr->debug_desc_layout, NULL);
object_ptr->debug_desc_layout = VK_NULL_HANDLE;
}
if (object_ptr->dummy_desc_layout) {
DispatchDestroyDescriptorSetLayout(object_ptr->device, object_ptr->dummy_desc_layout, NULL);
object_ptr->dummy_desc_layout = VK_NULL_HANDLE;
}
}
template <typename ObjectType>
void UtilPreCallRecordCreatePipelineLayout(create_pipeline_layout_api_state *cpl_state, ObjectType *object_ptr,
const VkPipelineLayoutCreateInfo *pCreateInfo) {
// Modify the pipeline layout by:
// 1. Copying the caller's descriptor set desc_layouts
// 2. Fill in dummy descriptor layouts up to the max binding
// 3. Fill in with the debug descriptor layout at the max binding slot
cpl_state->new_layouts.reserve(object_ptr->adjusted_max_desc_sets);
cpl_state->new_layouts.insert(cpl_state->new_layouts.end(), &pCreateInfo->pSetLayouts[0],
&pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]);
for (uint32_t i = pCreateInfo->setLayoutCount; i < object_ptr->adjusted_max_desc_sets - 1; ++i) {
cpl_state->new_layouts.push_back(object_ptr->dummy_desc_layout);
}
cpl_state->new_layouts.push_back(object_ptr->debug_desc_layout);
cpl_state->modified_create_info.pSetLayouts = cpl_state->new_layouts.data();
cpl_state->modified_create_info.setLayoutCount = object_ptr->adjusted_max_desc_sets;
}
template <typename CreateInfo>
struct CreatePipelineTraits {};
template <>
struct CreatePipelineTraits<VkGraphicsPipelineCreateInfo> {
using SafeType = safe_VkGraphicsPipelineCreateInfo;
static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->create_info.graphics; }
static uint32_t GetStageCount(const VkGraphicsPipelineCreateInfo &createInfo) { return createInfo.stageCount; }
static VkShaderModule GetShaderModule(const VkGraphicsPipelineCreateInfo &createInfo, uint32_t stage) {
return createInfo.pStages[stage].module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
createInfo->pStages[stage].module = shader_module;
}
};
template <>
struct CreatePipelineTraits<VkComputePipelineCreateInfo> {
using SafeType = safe_VkComputePipelineCreateInfo;
static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->create_info.compute; }
static uint32_t GetStageCount(const VkComputePipelineCreateInfo &createInfo) { return 1; }
static VkShaderModule GetShaderModule(const VkComputePipelineCreateInfo &createInfo, uint32_t stage) {
return createInfo.stage.module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
assert(stage == 0);
createInfo->stage.module = shader_module;
}
};
template <>
struct CreatePipelineTraits<VkRayTracingPipelineCreateInfoNV> {
using SafeType = safe_VkRayTracingPipelineCreateInfoCommon;
static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->create_info.raytracing; }
static uint32_t GetStageCount(const VkRayTracingPipelineCreateInfoNV &createInfo) { return createInfo.stageCount; }
static VkShaderModule GetShaderModule(const VkRayTracingPipelineCreateInfoNV &createInfo, uint32_t stage) {
return createInfo.pStages[stage].module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
createInfo->pStages[stage].module = shader_module;
}
};
template <>
struct CreatePipelineTraits<VkRayTracingPipelineCreateInfoKHR> {
using SafeType = safe_VkRayTracingPipelineCreateInfoCommon;
static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->create_info.raytracing; }
static uint32_t GetStageCount(const VkRayTracingPipelineCreateInfoKHR &createInfo) { return createInfo.stageCount; }
static VkShaderModule GetShaderModule(const VkRayTracingPipelineCreateInfoKHR &createInfo, uint32_t stage) {
return createInfo.pStages[stage].module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
createInfo->pStages[stage].module = shader_module;
}
};
// Examine the pipelines to see if they use the debug descriptor set binding index.
// If any do, create new non-instrumented shader modules and use them to replace the instrumented
// shaders in the pipeline. Return the (possibly) modified create infos to the caller.
template <typename CreateInfo, typename SafeCreateInfo, typename ObjectType>
void UtilPreCallRecordPipelineCreations(uint32_t count, const CreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines, std::vector<std::shared_ptr<PIPELINE_STATE>> &pipe_state,
std::vector<SafeCreateInfo> *new_pipeline_create_infos,
const VkPipelineBindPoint bind_point, ObjectType *object_ptr) {
using Accessor = CreatePipelineTraits<CreateInfo>;
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
return;
}
// Walk through all the pipelines, make a copy of each and flag each pipeline that contains a shader that uses the debug
// descriptor set index.
for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
uint32_t stageCount = Accessor::GetStageCount(pCreateInfos[pipeline]);
new_pipeline_create_infos->push_back(Accessor::GetPipelineCI(pipe_state[pipeline].get()));
bool replace_shaders = false;
if (pipe_state[pipeline]->active_slots.find(object_ptr->desc_set_bind_index) != pipe_state[pipeline]->active_slots.end()) {
replace_shaders = true;
}
// If the app requests all available sets, the pipeline layout was not modified at pipeline layout creation and the already
// instrumented shaders need to be replaced with uninstrumented shaders
if (pipe_state[pipeline]->pipeline_layout->set_layouts.size() >= object_ptr->adjusted_max_desc_sets) {
replace_shaders = true;
}
if (replace_shaders) {
for (uint32_t stage = 0; stage < stageCount; ++stage) {
const auto shader =
object_ptr->template Get<SHADER_MODULE_STATE>(Accessor::GetShaderModule(pCreateInfos[pipeline], stage));
VkShaderModule shader_module;
auto create_info = LvlInitStruct<VkShaderModuleCreateInfo>();
create_info.pCode = shader->words.data();
create_info.codeSize = shader->words.size() * sizeof(uint32_t);
VkResult result = DispatchCreateShaderModule(object_ptr->device, &create_info, pAllocator, &shader_module);
if (result == VK_SUCCESS) {
Accessor::SetShaderModule(&(*new_pipeline_create_infos)[pipeline], shader_module, stage);
} else {
object_ptr->ReportSetupProblem(object_ptr->device,
"Unable to replace instrumented shader with non-instrumented one. "
"Device could become unstable.");
}
}
}
}
}
// For every pipeline:
// - For every shader in a pipeline:
// - If the shader had to be replaced in PreCallRecord (because the pipeline is using the debug desc set index):
// - Destroy it since it has been bound into the pipeline by now. This is our only chance to delete it.
// - Track the shader in the shader_map
// - Save the shader binary if it contains debug code
template <typename CreateInfo, typename ObjectType>
void UtilPostCallRecordPipelineCreations(const uint32_t count, const CreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const VkPipelineBindPoint bind_point, ObjectType *object_ptr) {
using Accessor = CreatePipelineTraits<CreateInfo>;
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
return;
}
for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
auto pipeline_state = object_ptr->template Get<PIPELINE_STATE>(pPipelines[pipeline]);
if (!pipeline_state) continue;
uint32_t stageCount = 0;
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
stageCount = pipeline_state->create_info.graphics.stageCount;
} else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
stageCount = 1;
} else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
stageCount = pipeline_state->create_info.raytracing.stageCount;
} else {
assert(false);
}
for (uint32_t stage = 0; stage < stageCount; ++stage) {
if (pipeline_state->active_slots.find(object_ptr->desc_set_bind_index) != pipeline_state->active_slots.end()) {
DispatchDestroyShaderModule(object_ptr->device, Accessor::GetShaderModule(pCreateInfos[pipeline], stage),
pAllocator);
}
std::shared_ptr<const SHADER_MODULE_STATE> shader_state;
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
shader_state =
object_ptr->template Get<SHADER_MODULE_STATE>(pipeline_state->create_info.graphics.pStages[stage].module);
} else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
assert(stage == 0);
shader_state = object_ptr->template Get<SHADER_MODULE_STATE>(pipeline_state->create_info.compute.stage.module);
} else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
shader_state =
object_ptr->template Get<SHADER_MODULE_STATE>(pipeline_state->create_info.raytracing.pStages[stage].module);
} else {
assert(false);
}
std::vector<unsigned int> code;
// Save the shader binary
// The core_validation ShaderModule tracker saves the binary too, but discards it when the ShaderModule
// is destroyed. Applications may destroy ShaderModules after they are placed in a pipeline and before
// the pipeline is used, so we have to keep another copy.
if (shader_state && shader_state->has_valid_spirv) code = shader_state->words;
object_ptr->shader_map[shader_state->gpu_validation_shader_id].pipeline = pipeline_state->pipeline();
// Be careful to use the originally bound (instrumented) shader here, even if PreCallRecord had to back it
// out with a non-instrumented shader. The non-instrumented shader (found in pCreateInfo) was destroyed above.
VkShaderModule shader_module = VK_NULL_HANDLE;
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
shader_module = pipeline_state->create_info.graphics.pStages[stage].module;
} else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
assert(stage == 0);
shader_module = pipeline_state->create_info.compute.stage.module;
} else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
shader_module = pipeline_state->create_info.raytracing.pStages[stage].module;
} else {
assert(false);
}
object_ptr->shader_map[shader_state->gpu_validation_shader_id].shader_module = shader_module;
object_ptr->shader_map[shader_state->gpu_validation_shader_id].pgm = std::move(code);
}
}
}
template <typename CreateInfos, typename SafeCreateInfos>
void UtilCopyCreatePipelineFeedbackData(const uint32_t count, CreateInfos *pCreateInfos, SafeCreateInfos *pSafeCreateInfos) {
for (uint32_t i = 0; i < count; i++) {
auto src_feedback_struct = LvlFindInChain<VkPipelineCreationFeedbackCreateInfoEXT>(pSafeCreateInfos[i].pNext);
if (!src_feedback_struct) return;
auto dst_feedback_struct = const_cast<VkPipelineCreationFeedbackCreateInfoEXT *>(
LvlFindInChain<VkPipelineCreationFeedbackCreateInfoEXT>(pCreateInfos[i].pNext));
*dst_feedback_struct->pPipelineCreationFeedback = *src_feedback_struct->pPipelineCreationFeedback;
for (uint32_t j = 0; j < src_feedback_struct->pipelineStageCreationFeedbackCount; j++) {
dst_feedback_struct->pPipelineStageCreationFeedbacks[j] = src_feedback_struct->pPipelineStageCreationFeedbacks[j];
}
}
}
template <typename ObjectType>
// For the given command buffer, map its debug data buffers and read their contents for analysis.
void UtilProcessInstrumentationBuffer(VkQueue queue, CMD_BUFFER_STATE *cb_node, ObjectType *object_ptr) {
if (cb_node && (cb_node->hasDrawCmd || cb_node->hasTraceRaysCmd || cb_node->hasDispatchCmd)) {
auto gpu_buffer_list = object_ptr->GetBufferInfo(cb_node);
uint32_t draw_index = 0;
uint32_t compute_index = 0;
uint32_t ray_trace_index = 0;
for (auto &buffer_info : gpu_buffer_list) {
char *pData;
uint32_t operation_index = 0;
if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
operation_index = draw_index;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
operation_index = compute_index;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
operation_index = ray_trace_index;
} else {
assert(false);
}
VkResult result = vmaMapMemory(object_ptr->vmaAllocator, buffer_info.output_mem_block.allocation, (void **)&pData);
if (result == VK_SUCCESS) {
object_ptr->AnalyzeAndGenerateMessages(cb_node->commandBuffer(), queue, buffer_info,
operation_index, (uint32_t *)pData);
vmaUnmapMemory(object_ptr->vmaAllocator, buffer_info.output_mem_block.allocation);
}
if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
draw_index++;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
compute_index++;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
ray_trace_index++;
} else {
assert(false);
}
}
}
}
template <typename ObjectType>
// Submit a memory barrier on graphics queues.
// Lazy-create and record the needed command buffer.
void UtilSubmitBarrier(VkQueue queue, ObjectType *object_ptr) {
auto queue_barrier_command_info_it = object_ptr->queue_barrier_command_infos.emplace(queue, UtilQueueBarrierCommandInfo{});
if (queue_barrier_command_info_it.second) {
UtilQueueBarrierCommandInfo &queue_barrier_command_info = queue_barrier_command_info_it.first->second;
uint32_t queue_family_index = 0;
auto queue_state = object_ptr->ValidationStateTracker::template Get<QUEUE_STATE>(queue);
if (queue_state) {
queue_family_index = queue_state->queueFamilyIndex;
}
VkResult result = VK_SUCCESS;
auto pool_create_info = LvlInitStruct<VkCommandPoolCreateInfo>();
pool_create_info.queueFamilyIndex = queue_family_index;
result = DispatchCreateCommandPool(object_ptr->device, &pool_create_info, nullptr,
&queue_barrier_command_info.barrier_command_pool);
if (result != VK_SUCCESS) {
object_ptr->ReportSetupProblem(object_ptr->device, "Unable to create command pool for barrier CB.");
queue_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
return;
}
auto buffer_alloc_info = LvlInitStruct<VkCommandBufferAllocateInfo>();
buffer_alloc_info.commandPool = queue_barrier_command_info.barrier_command_pool;
buffer_alloc_info.commandBufferCount = 1;
buffer_alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
result = DispatchAllocateCommandBuffers(object_ptr->device, &buffer_alloc_info,
&queue_barrier_command_info.barrier_command_buffer);
if (result != VK_SUCCESS) {
object_ptr->ReportSetupProblem(object_ptr->device, "Unable to create barrier command buffer.");
DispatchDestroyCommandPool(object_ptr->device, queue_barrier_command_info.barrier_command_pool, nullptr);
queue_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
queue_barrier_command_info.barrier_command_buffer = VK_NULL_HANDLE;
return;
}
// Hook up command buffer dispatch
object_ptr->vkSetDeviceLoaderData(object_ptr->device, queue_barrier_command_info.barrier_command_buffer);
// Record a global memory barrier to force availability of device memory operations to the host domain.
auto command_buffer_begin_info = LvlInitStruct<VkCommandBufferBeginInfo>();
result = DispatchBeginCommandBuffer(queue_barrier_command_info.barrier_command_buffer, &command_buffer_begin_info);
if (result == VK_SUCCESS) {
auto memory_barrier = LvlInitStruct<VkMemoryBarrier>();
memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
memory_barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT;
DispatchCmdPipelineBarrier(queue_barrier_command_info.barrier_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_HOST_BIT, 0, 1, &memory_barrier, 0, nullptr, 0, nullptr);
DispatchEndCommandBuffer(queue_barrier_command_info.barrier_command_buffer);
}
}
UtilQueueBarrierCommandInfo &queue_barrier_command_info = queue_barrier_command_info_it.first->second;
if (queue_barrier_command_info.barrier_command_buffer != VK_NULL_HANDLE) {
auto submit_info = LvlInitStruct<VkSubmitInfo>();
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &queue_barrier_command_info.barrier_command_buffer;
DispatchQueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);
}
}
void UtilGenerateStageMessage(const uint32_t *debug_record, std::string &msg);
void UtilGenerateCommonMessage(const debug_report_data *report_data, const VkCommandBuffer commandBuffer,
const uint32_t *debug_record, const VkShaderModule shader_module_handle,
const VkPipeline pipeline_handle, const VkPipelineBindPoint pipeline_bind_point,
const uint32_t operation_index, std::string &msg);
void UtilGenerateSourceMessages(const std::vector<unsigned int> &pgm, const uint32_t *debug_record, bool from_printf,
std::string &filename_msg, std::string &source_msg);