-
Notifications
You must be signed in to change notification settings - Fork 19
/
loss.py
284 lines (223 loc) · 9.75 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torchvision.models import vgg19
from torchvision import transforms
from torch.autograd import Variable
import numpy as np
from torch.distributions.multivariate_normal import MultivariateNormal as Norm
import cv2
def kldiv(s_map, gt):
assert s_map.size() == gt.size()
batch_size = s_map.size(0)
w = s_map.size(1)
h = s_map.size(2)
sum_s_map = torch.sum(s_map.view(batch_size, -1), 1)
expand_s_map = sum_s_map.view(batch_size, 1, 1).expand(batch_size, w, h)
assert expand_s_map.size() == s_map.size()
sum_gt = torch.sum(gt.view(batch_size, -1), 1)
expand_gt = sum_gt.view(batch_size, 1, 1).expand(batch_size, w, h)
assert expand_gt.size() == gt.size()
s_map = s_map/(expand_s_map*1.0)
gt = gt / (expand_gt*1.0)
s_map = s_map.view(batch_size, -1)
gt = gt.view(batch_size, -1)
eps = 2.2204e-16
result = gt * torch.log(eps + gt/(s_map + eps))
# print(torch.log(eps + gt/(s_map + eps)) )
return torch.mean(torch.sum(result, 1))
def normalize_map(s_map):
# normalize the salience map (as done in MIT code)
batch_size = s_map.size(0)
w = s_map.size(1)
h = s_map.size(2)
min_s_map = torch.min(s_map.view(batch_size, -1), 1)[0].view(batch_size, 1, 1).expand(batch_size, w, h)
max_s_map = torch.max(s_map.view(batch_size, -1), 1)[0].view(batch_size, 1, 1).expand(batch_size, w, h)
norm_s_map = (s_map - min_s_map)/(max_s_map-min_s_map*1.0)
return norm_s_map
def similarity(s_map, gt):
''' For single image metric
Size of Image - WxH or 1xWxH
gt is ground truth saliency map
'''
batch_size = s_map.size(0)
w = s_map.size(1)
h = s_map.size(2)
s_map = normalize_map(s_map)
gt = normalize_map(gt)
sum_s_map = torch.sum(s_map.view(batch_size, -1), 1)
expand_s_map = sum_s_map.view(batch_size, 1, 1).expand(batch_size, w, h)
assert expand_s_map.size() == s_map.size()
sum_gt = torch.sum(gt.view(batch_size, -1), 1)
expand_gt = sum_gt.view(batch_size, 1, 1).expand(batch_size, w, h)
s_map = s_map/(expand_s_map*1.0)
gt = gt / (expand_gt*1.0)
s_map = s_map.view(batch_size, -1)
gt = gt.view(batch_size, -1)
return torch.mean(torch.sum(torch.min(s_map, gt), 1))
def cc(s_map, gt):
assert s_map.size() == gt.size()
batch_size = s_map.size(0)
w = s_map.size(1)
h = s_map.size(2)
mean_s_map = torch.mean(s_map.view(batch_size, -1), 1).view(batch_size, 1, 1).expand(batch_size, w, h)
std_s_map = torch.std(s_map.view(batch_size, -1), 1).view(batch_size, 1, 1).expand(batch_size, w, h)
mean_gt = torch.mean(gt.view(batch_size, -1), 1).view(batch_size, 1, 1).expand(batch_size, w, h)
std_gt = torch.std(gt.view(batch_size, -1), 1).view(batch_size, 1, 1).expand(batch_size, w, h)
s_map = (s_map - mean_s_map) / std_s_map
gt = (gt - mean_gt) / std_gt
ab = torch.sum((s_map * gt).view(batch_size, -1), 1)
aa = torch.sum((s_map * s_map).view(batch_size, -1), 1)
bb = torch.sum((gt * gt).view(batch_size, -1), 1)
return torch.mean(ab / (torch.sqrt(aa*bb)))
def nss(s_map, gt):
if s_map.size() != gt.size():
s_map = s_map.cpu().squeeze(0).numpy()
s_map = torch.FloatTensor(cv2.resize(s_map, (gt.size(2), gt.size(1)))).unsqueeze(0)
s_map = s_map.cuda()
gt = gt.cuda()
# print(s_map.size(), gt.size())
assert s_map.size()==gt.size()
batch_size = s_map.size(0)
w = s_map.size(1)
h = s_map.size(2)
mean_s_map = torch.mean(s_map.view(batch_size, -1), 1).view(batch_size, 1, 1).expand(batch_size, w, h)
std_s_map = torch.std(s_map.view(batch_size, -1), 1).view(batch_size, 1, 1).expand(batch_size, w, h)
eps = 2.2204e-16
s_map = (s_map - mean_s_map) / (std_s_map + eps)
s_map = torch.sum((s_map * gt).view(batch_size, -1), 1)
count = torch.sum(gt.view(batch_size, -1), 1)
return torch.mean(s_map / count)
def auc_judd(saliencyMap, fixationMap, jitter=True, toPlot=False, normalize=False):
# saliencyMap is the saliency map
# fixationMap is the human fixation map (binary matrix)
# jitter=True will add tiny non-zero random constant to all map locations to ensure
# ROC can be calculated robustly (to avoid uniform region)
# if toPlot=True, displays ROC curve
# If there are no fixations to predict, return NaN
if saliencyMap.size() != fixationMap.size():
saliencyMap = saliencyMap.cpu().squeeze(0).numpy()
saliencyMap = torch.FloatTensor(cv2.resize(saliencyMap, (fixationMap.size(2), fixationMap.size(1)))).unsqueeze(0)
# saliencyMap = saliencyMap.cuda()
# fixationMap = fixationMap.cuda()
if len(saliencyMap.size())==3:
saliencyMap = saliencyMap[0,:,:]
fixationMap = fixationMap[0,:,:]
saliencyMap = saliencyMap.numpy()
fixationMap = fixationMap.numpy()
if normalize:
saliencyMap = normalize_map(saliencyMap)
if not fixationMap.any():
print('Error: no fixationMap')
score = float('nan')
return score
# make the saliencyMap the size of the image of fixationMap
if not np.shape(saliencyMap) == np.shape(fixationMap):
from scipy.misc import imresize
saliencyMap = imresize(saliencyMap, np.shape(fixationMap))
# jitter saliency maps that come from saliency models that have a lot of zero values.
# If the saliency map is made with a Gaussian then it does not need to be jittered as
# the values are varied and there is not a large patch of the same value. In fact
# jittering breaks the ordering in the small values!
if jitter:
# jitter the saliency map slightly to distrupt ties of the same numbers
saliencyMap = saliencyMap + np.random.random(np.shape(saliencyMap)) / 10 ** 7
# normalize saliency map
saliencyMap = (saliencyMap - saliencyMap.min()) \
/ (saliencyMap.max() - saliencyMap.min())
if np.isnan(saliencyMap).all():
print('NaN saliencyMap')
score = float('nan')
return score
S = saliencyMap.flatten()
F = fixationMap.flatten()
Sth = S[F > 0] # sal map values at fixation locations
Nfixations = len(Sth)
Npixels = len(S)
allthreshes = sorted(Sth, reverse=True) # sort sal map values, to sweep through values
tp = np.zeros((Nfixations + 2))
fp = np.zeros((Nfixations + 2))
tp[0], tp[-1] = 0, 1
fp[0], fp[-1] = 0, 1
for i in range(Nfixations):
thresh = allthreshes[i]
aboveth = (S >= thresh).sum() # total number of sal map values above threshold
tp[i + 1] = float(i + 1) / Nfixations # ratio sal map values at fixation locations
# above threshold
fp[i + 1] = float(aboveth - i) / (Npixels - Nfixations) # ratio other sal map values
# above threshold
score = np.trapz(tp, x=fp)
allthreshes = np.insert(allthreshes, 0, 0)
allthreshes = np.append(allthreshes, 1)
if toPlot:
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(1, 2, 1)
ax.matshow(saliencyMap, cmap='gray')
ax.set_title('SaliencyMap with fixations to be predicted')
[y, x] = np.nonzero(fixationMap)
s = np.shape(saliencyMap)
plt.axis((-.5, s[1] - .5, s[0] - .5, -.5))
plt.plot(x, y, 'ro')
ax = fig.add_subplot(1, 2, 2)
plt.plot(fp, tp, '.b-')
ax.set_title('Area under ROC curve: ' + str(score))
plt.axis((0, 1, 0, 1))
plt.show()
return score
def auc_shuff(s_map,gt,other_map,splits=100,stepsize=0.1):
if len(s_map.size())==3:
s_map = s_map[0,:,:]
gt = gt[0,:,:]
other_map = other_map[0,:,:]
s_map = s_map.numpy()
s_map = normalize_map(s_map)
gt = gt.numpy()
other_map = other_map.numpy()
num_fixations = np.sum(gt)
x,y = np.where(other_map==1)
other_map_fixs = []
for j in zip(x,y):
other_map_fixs.append(j[0]*other_map.shape[0] + j[1])
ind = len(other_map_fixs)
assert ind==np.sum(other_map), 'something is wrong in auc shuffle'
num_fixations_other = min(ind,num_fixations)
num_pixels = s_map.shape[0]*s_map.shape[1]
random_numbers = []
for i in range(0,splits):
temp_list = []
t1 = np.random.permutation(ind)
for k in t1:
temp_list.append(other_map_fixs[k])
random_numbers.append(temp_list)
aucs = []
# for each split, calculate auc
for i in random_numbers:
r_sal_map = []
for k in i:
r_sal_map.append(s_map[k%s_map.shape[0]-1, int(k/s_map.shape[0])])
# in these values, we need to find thresholds and calculate auc
thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
r_sal_map = np.array(r_sal_map)
# once threshs are got
thresholds = sorted(set(thresholds))
area = []
area.append((0.0,0.0))
for thresh in thresholds:
# in the salience map, keep only those pixels with values above threshold
temp = np.zeros(s_map.shape)
temp[s_map>=thresh] = 1.0
num_overlap = np.where(np.add(temp,gt)==2)[0].shape[0]
tp = num_overlap/(num_fixations*1.0)
#fp = (np.sum(temp) - num_overlap)/((np.shape(gt)[0] * np.shape(gt)[1]) - num_fixations)
# number of values in r_sal_map, above the threshold, divided by num of random locations = num of fixations
fp = len(np.where(r_sal_map>thresh)[0])/(num_fixations*1.0)
area.append((round(tp,4),round(fp,4)))
area.append((1.0,1.0))
area.sort(key = lambda x:x[0])
tp_list = [x[0] for x in area]
fp_list = [x[1] for x in area]
aucs.append(np.trapz(np.array(tp_list),np.array(fp_list)))
return np.mean(aucs)