-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAmpliSeq_QC_Frontend.R
714 lines (603 loc) · 30.5 KB
/
AmpliSeq_QC_Frontend.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
library(shiny)
library(shinyFiles)
library(bslib)
library(tidyverse)
library(ggridges)
library(ggstance)
library(ape)
library(phangorn)
library(ggtree)
#library(ggimage)
library(ggnewscale)
library(cowplot)
x.theme.axis.rotate.angle <- theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))
legend.size <- theme(legend.key.size = unit(0.55,"line"))
standard.textsize <- 11
text.size.within <- (5/14)*(standard.textsize-2)
theme.text.size <- theme(text = element_text(size = standard.textsize))
# Define UI
ui <- fluidPage(
titlePanel("Treponema AmpliSeq QC"),
sidebarLayout(
sidebarPanel(
style = "position:fixed;width:22%;",
shinyDirButton("directory", "Choose a Directory", "Please select a directory"),
hr(),
uiOutput("checkboxes"),
hr(),
),
mainPanel(
tags$h3("Selected Directory"),
verbatimTextOutput("selectedDirectory"),
tags$h3("Selected Files"),
textOutput("selectedFiles"),
hr(),
tags$h3("Pipeline Status"),
plotOutput(outputId = "p.pipeline.status"),
hr(),
tags$h3("Sequencing QC"),
conditionalPanel(
condition = "output.folderSelected == true",
p("For more detailed MultiQC Report, follow link"),
uiOutput("multiqcLink")
),
hr(),
plotOutput(outputId = "p.readlengths"),
hr(),
plotOutput(outputId = "p.ontargetmapping"),
hr(),
tags$h4("Amplicon Coverage"),
navset_card_underline(
nav_panel("Median", plotOutput("p.median.cov")),
nav_panel("Minimum", plotOutput("p.min.cov")),
nav_panel("%<10x", plotOutput("p.10x.cov"))
),
hr(),
tags$h3("Sample Relatedness"),
textOutput("SNPcount"),
p("Note, if ≤10 SNPs are identified, consider investigating further."),
tags$h4("NJ Phylogeny for Run"),
plotOutput(outputId = "p.NJ.tree"),
hr(),
tags$h4("Contextualised NJ Tree"),
column(
width = 10, uiOutput("p.contextual.tree.ui")
),
#tags$h4("Contextualised NJ Tree"),
#plotOutput(outputId = "p.contextual.tree"),
hr(),
tags$h3("Resistance/Lineage Summary"),
plotOutput("p.Lineage.Resistance.bars"),
hr(),
tags$h3("Sample Report"),
dataTableOutput("t.resistancetable"),
hr()
)
)
)
# Define Server
server <- function(input, output, session) {
# Reactive variable to hold selected files
selectedFiles <- reactive({
input$selected_files
})
# Set up shinyFiles to browse directories
shinyDirChoose(input, "directory", roots = c(home = "~"), filetypes = c("", "txt"))
# Reactive value to store the previously selected directory
previousDirectory <- reactiveVal(NULL)
# Flag to indicate whether a folder is selected
folderSelected <- reactiveVal(FALSE)
observe({
cat("Directory selection changed\n")
# Check if a directory is chosen
if (is.null(input$directory) || length(input$directory) == 0) {
cat("No directory selected or directory input is empty\n")
output$selectedDirectory <- renderText("No directory selected")
folderSelected(FALSE) # Set the flag to FALSE when no directory is selected
return()
}
# Get the path of the selected directory
directoryPath <- try(parseDirPath(c(home = "~"), input$directory), silent = TRUE)
cat("Parsed directory path:", directoryPath, "\n")
# Check if directoryPath is valid
if (inherits(directoryPath, "try-error") || is.null(directoryPath) || length(directoryPath) == 0) {
cat("Directory path is invalid or empty\n")
output$selectedDirectory <- renderText("Invalid directory path")
return()
}
# Display the selected directory path
output$selectedDirectory <- renderText({
paste(directoryPath)
})
# Append the fixed subdirectory path
subdirectoryPath <- file.path(directoryPath, "mapped_reads/")
cat("Subdirectory path:", subdirectoryPath, "\n")
# Check if subdirectoryPath exists
if (!isTRUE(dir.exists(subdirectoryPath))) {
cat("Subdirectory does not exist\n")
output$checkboxes <- renderUI({
h4("Subdirectory does not exist")
})
folderSelected(TRUE) # Set the flag to TRUE since a valid directory is selected
return()
}
# List files in the subdirectory and sort alphabetically
files <- sort(list.files(subdirectoryPath))
cat("Files in subdirectory:", paste(files, collapse = ", "), "\n")
# Apply regex to trim filenames (remove '_sorted.bam' extension)
trimmedFiles <- gsub("\\_sorted\\.bam$", "", files)
# Create checkboxes dynamically
current.checkbox_list <- checkboxGroupInput("selected_files", "\nSelect Files:", choices = trimmedFiles, selected = trimmedFiles)
output$checkboxes <- renderUI({
current.checkbox_list
})
#})
# Check if the directory has changed
if (!is.null(previousDirectory()) && previousDirectory() == directoryPath) {
cat("Directory has not changed, skipping resource path addition\n")
folderSelected(TRUE) # Set the flag to TRUE since a valid directory is selected
return()
}
# Update the previous directory
previousDirectory(directoryPath)
# Serve the directory containing the MultiQC report
cat("Directory path for resource:", directoryPath, "\n")
if (dir.exists(directoryPath)) {
addResourcePath("multiqc", directoryPath) # Map URL path to local directory
cat("Resource path added for:", directoryPath, "\n")
}
folderSelected(TRUE) # Set the flag to TRUE when a valid directory is selected and processed
})
# Display selected files
output$selectedFiles <- renderText({
if (is.null(selectedFiles()) || length(selectedFiles()) == 0) {
return("No files selected")
}
paste("", paste(selectedFiles(), collapse = ", "))
})
# Reactive expression to capture MultiQC report path
multiQC <- reactive({
req(input$directory) # Ensure the directory input is not null
multiQCPath <- file.path(parseDirPath(c(home = "~"), input$directory), "multiqc/multiqc_report.html")
cat("MultiQC html path:", multiQCPath, "\n")
multiQCPath
})
# Render a link to the MultiQC report
output$multiqcLink <- renderUI({
req(input$directory) # Ensure the directory input is not null
multiQCPath <- multiQC()
cat("MultiQC report link being generated\n")
if (!file.exists(multiQCPath)) {
cat("MultiQC report not found at:", multiQCPath, "\n")
return(h4("MultiQC report not found"))
}
reportUrl <- file.path("multiqc", "multiqc/multiqc_report.html") # Construct the URL
cat("MultiQC report URL:", reportUrl, "\n")
tags$a(href = reportUrl, target = "_blank", "Open MultiQC Report")
})
# Output to indicate whether a folder is selected
output$folderSelected <- reactive({
folderSelected()
})
outputOptions(output, "folderSelected", suspendWhenHidden = FALSE)
####################
# Make some plots
# First check if different processes have finished
pipelineStatus <- reactive({
req(input$selected_files)
pipeline.status.df <- data.frame(Samples=input$selected_files, raw.mapping="yes")
# check if reads are present
fastq.dir <- file.path(parseDirPath(c(home = "~"), input$directory), "fastqs")
cat("\ninternal fastq path:", fastq.dir, "\n")
if (dir.exists(fastq.dir)){
pipeline.status.df <- pipeline.status.df %>% left_join( data.frame(Samples=(sort(gsub("\\.fastq\\.gz","", list.files(fastq.dir)))), fastq="yes"), by="Samples") %>%
replace_na(list(fastq = "no"))
}
else {
pipeline.status.df <- pipeline.status.df %>% left_join( data.frame(Samples=input$selected_files, fastq = "no"), by="Samples")
}
# Are post filter QC files available - readlengths
readlength.dir <- file.path(parseDirPath(c(home = "~"), input$directory), "qc/post_filter_qc/readlengths/")
if (dir.exists(readlength.dir)){
pipeline.status.df <- pipeline.status.df %>% left_join( data.frame(Samples=(sort(gsub("\\.read\\-lengths\\.tsv","", list.files(readlength.dir)))), post.qc.readlengths="yes"), by="Samples") %>%
replace_na(list(post.qc.readlengths = "no")) }
else {
pipeline.status.df <- pipeline.status.df %>% left_join( data.frame(Samples=input$selected_files, post.qc.readlengths = "no"), by="Samples")
}
# Are coverage summary files available
cov.dir <- file.path(parseDirPath(c(home = "~"), input$directory), "qc/post_filter_qc/coverage/coverage_summary/")
if (dir.exists(cov.dir)){
pipeline.status.df <- pipeline.status.df %>% left_join( data.frame(Samples=(sort(gsub("\\_coverage\\_summary\\.tsv","", list.files(cov.dir)))), coverage.summary="yes"), by="Samples") %>%
replace_na(list(coverage.summary = "no"))
}
else {
pipeline.status.df <- pipeline.status.df %>% left_join( data.frame(Samples=input$selected_files, coverage.summary = "no"), by="Samples")
}
# whether on target stats are available
ontarget.file <- file.path(parseDirPath(c(home = "~"), input$directory), "qc/post_filter_qc/on_and_off_target_stats.csv")
if (file.exists(ontarget.file)){
Nextflow.mapping.stats1 <- read.csv(ontarget.file)
pipeline.status.df <- pipeline.status.df %>% left_join( data.frame(Samples=Nextflow.mapping.stats1$Name, mapping.stats="yes"), by="Samples") %>%
replace_na(list(mapping.stats = "no"))
}
else {
pipeline.status.df <- pipeline.status.df %>% left_join( data.frame(Samples=input$selected_files, mapping.stats="no"), by="Samples")
}
# whether variants were called
vars.dir <- file.path(parseDirPath(c(home = "~"), input$directory), "variants")
if (dir.exists(vars.dir)){
pipeline.status.df <- pipeline.status.df %>% left_join( data.frame(Samples=(sort(gsub("_clair3.gvcf.gz","", list.files(vars.dir)))), variants.file="yes"), by="Samples") %>%
replace_na(list(variants.file = "no"))
}
else {
pipeline.status.df <- pipeline.status.df %>% left_join( data.frame(Samples=input$selected_files, variants.file = "no"), by="Samples")
}
# whether a consensus fasta was made
consensus.dir <- file.path(parseDirPath(c(home = "~"), input$directory), "curated_consensus")
if (dir.exists(consensus.dir)){
pipeline.status.df <- pipeline.status.df %>% left_join( data.frame(Samples=gsub("\\.fasta","",sort(list.files(consensus.dir)[grep("multi_locus",list.files(consensus.dir), invert=T)])), fasta.file="yes"), by="Samples") %>%
replace_na(list(fasta.file = "no"))
}
else {
pipeline.status.df <- pipeline.status.df %>% left_join( data.frame(Samples=input$selected_files, fasta.file = "no"), by="Samples")
}
cat("\nshow pipeline.status.df:")
print(pipeline.status.df)
pipeline.status.df
})
pipelineStatusMelt <- reactive({
req(input$selected_files)
req(pipelineStatus)
# melt to long form for plotting
pipeline.status.df.melt <- pipelineStatus() %>%
pivot_longer(-Samples, names_to="Process", values_to="process.done") %>%
mutate(Process=factor(Process, levels=c("fastq", "raw.mapping","mapping.stats","post.qc.readlengths","coverage.summary","variants.file","fasta.file"))) %>%
mutate(Process.done=factor(process.done, levels=c("yes","no")))
cat("show pipeline.status.df.melt:")
print(pipeline.status.df.melt)
pipeline.status.df.melt
})
# Now plot pipeline status with emojis
output$p.pipeline.status <- renderPlot({
# make plot
p.pipeline.status <- pipelineStatusMelt() %>%
ggplot(aes(y=Samples, x=Process, fill=Process.done)) +
geom_tile(color='grey95', alpha=0.5, size=1.5) +
theme_bw() + theme.text.size + legend.size + x.theme.axis.rotate.angle +
scale_x_discrete(expand = c(0, 0)) +
scale_fill_manual(values=c("green3", "red1"), breaks=c("yes","no")) +
#geom_emoji(aes(image = ifelse(process.done=="yes", '1f600', '1f622'))) + # this looks fun, but takes ages to load
theme(legend.position='top')
p.pipeline.status
})
# Reactive data for read length distributions
collatedLengths <- reactive({
req(input$selected_files)
readlength.directory <- file.path(parseDirPath(c(home = "~"), input$directory), "qc/post_filter_qc/readlengths/")
cat("\nChecking read length distributions\n")
cat("readlength path:", readlength.directory, "\n")
collated.lengths <- NULL
for (current.sample in input$selected_files) {
current.length.sample <- paste0(readlength.directory, current.sample, ".read-lengths.tsv")
if (file.exists(current.length.sample)){
current.lengths <- read.table(current.length.sample, col.names = c("read.length", "count"))
current.lengths$sample <- current.sample
}
else{
cat("\nFile", current.length.sample, "does not exist.\n")
}
collated.lengths <- rbind(collated.lengths, current.lengths)
}
collated.lengths
})
output$p.readlengths <- renderPlot({
p.readlengths <- collatedLengths() %>%
arrange(sample) %>%
group_by(sample) %>%
mutate(total.reads = sum(count)) %>%
ggplot(aes(x = read.length, y = sample, height = count, fill = sample)) +
geom_density_ridges(stat = 'identity', scale = 1, linewidth = 0.35, alpha = 0.9) +
theme_bw() + x.theme.axis.rotate.angle + #theme.text.size + legend.size +
coord_cartesian(xlim=c(400,850)) +
labs(y = "Sample", x = "Read Length") + theme(legend.position = 'none') +
labs(title = "Read Length Distributions")
p.readlengths
})
# On target mapping (no loop here)
Nextflow.mapping.stats1.file <- reactive({
file.path(parseDirPath(c(home = "~"), input$directory), "qc/post_filter_qc/on_and_off_target_stats.csv")
})
Nextflow.mapping.stats1 <- reactive({
read.csv(Nextflow.mapping.stats1.file())
})
output$p.ontargetmapping <- renderPlot({
p.on.target.mapping <- Nextflow.mapping.stats1() %>%
arrange(Name) %>%
select(Name, On.target.count, Off.target.count, On.target.percentage) %>%
filter(Name %in% selectedFiles()) %>%
pivot_longer(-c(Name, On.target.percentage), names_to = "Reads", values_to = "Count") %>%
mutate(On.target.percentage = ifelse(Reads == "On.target.count", On.target.percentage, NA)) %>%
ggplot(aes(y = Name, x = Count, fill = Reads)) +
geom_barh(stat = 'identity', position = 'stack', width = 0.6) +
theme_bw() + theme.text.size + legend.size + x.theme.axis.rotate.angle +
geom_text(aes(y = Name, x = Count + 1500, label = On.target.percentage), angle = 0, size = text.size.within, hjust = 0) +
coord_cartesian(x = c(0, max(Nextflow.mapping.stats1()$On.target.count) + 3000)) +
scale_fill_brewer(palette = 'Dark2') +
scale_x_continuous(breaks = pretty, labels = scales::comma) +
labs(y = "Sample", x = "Read Count", title = "Reads mapping to target regions")
p.on.target.mapping
})
# Reactive data for per sample amplicon coverage
collatedCov <- reactive({
req(input$selected_files)
samplecov.directory <- file.path(parseDirPath(c(home = "~"), input$directory), "qc/post_filter_qc/coverage/coverage_summary/")
cat("\nChecking Sample Coverage\n")
cat("samplecov path:", samplecov.directory, "\n")
collated.cov <- NULL
for (current.sample in input$selected_files) {
current.cov.sample <- paste0(samplecov.directory, current.sample, "_coverage_summary.tsv")
cat("\n current_samplecov file:", current.cov.sample)
if (file.exists(current.cov.sample))
current.cov <- read.table(current.cov.sample, header = TRUE)
else
cat("\nFile", current.cov.sample, "does not exist\n")
collated.cov <- rbind(collated.cov, current.cov)
}
collated.cov
})
output$p.median.cov <- renderPlot({
p.per_region.mediancov.heatmap <- collatedCov() %>%
select(sample, name, depth_median, start) %>%
arrange(sample, start) %>%
mutate(name = factor(name, levels=unique(name))) %>%
ggplot(aes(x = name, y = sample, fill = depth_median)) +
geom_tile(color = 'grey95') +
theme_bw() + x.theme.axis.rotate.angle + theme.text.size + legend.size +
scale_fill_viridis_b(option = 'D', trans = "log10", breaks = c(10, 25, 50), direction = -1, na.value = 'grey95') +
labs(x = "Amplicon", y = "Sample", fill = "Median\nCoverage") +
labs(title = "Median Coverage (X) per sample & amplicon")
p.per_region.mediancov.heatmap
})
output$p.min.cov <- renderPlot({
p.per_region.mincov.heatmap <- collatedCov() %>%
select(sample, name, depth_min, start) %>%
arrange(sample, start) %>%
mutate(name = factor(name, levels=unique(name))) %>%
ggplot(aes(x = name, y = sample, fill = depth_min)) +
geom_tile(color = 'grey95') +
theme_bw() + x.theme.axis.rotate.angle + theme.text.size + legend.size +
scale_fill_viridis_b(option = 'D', trans = "log10", breaks = c(10, 25, 50), direction = -1, na.value = 'grey95') +
labs(x = "Amplicon", y = "Sample", fill = "Minimum\nCoverage") +
labs(title = "Minimum Coverage (X) per sample & amplicon")
p.per_region.mincov.heatmap
})
output$p.10x.cov <- renderPlot({
p.per_region.10xcov.heatmap <- collatedCov() %>%
select(sample, name, cov_perc_10.0x, start) %>%
mutate(cov_perc_below_10.0x = 100 - cov_perc_10.0x) %>%
arrange(sample, start) %>%
mutate(name = factor(name, levels=unique(name))) %>%
ggplot(aes(x = name, y = sample, fill = cov_perc_below_10.0x)) +
geom_tile(color = 'grey95') +
theme_bw() + x.theme.axis.rotate.angle + theme.text.size + legend.size +
scale_fill_viridis_b(option = 'D', trans = "log10", direction = 1, na.value = 'grey95') +
labs(x = "Amplicon", y = "Sample", fill = "% Sites\n<10x") +
labs(title = "% sites in amplicon <10X coverage")
p.per_region.10xcov.heatmap
})
# Prepare and plot a basic phylogeny of SNPs
collatedPhylo <- reactive({
req(input$selected_files)
# Read in concatenated SNPs (in fasta format)
# Specify path for data
multi_locus.filepath <- file.path(parseDirPath(c(home = "~"), input$directory), "curated_consensus/")
multi_locus.files <- paste0(multi_locus.filepath, input$selected_files, "_multi_locus.fasta", sep="")
cat("\nChecking multi-locus directory\n")
cat("Multi-locus file path:", multi_locus.filepath, "\n")
cat("Multi-locus file list:", multi_locus.files, "\n")
# read fasta files into a list
multi_locus.sequences <- lapply(multi_locus.files, read.dna, format = "fasta")
# convert into an alignment
multi_locus.sequences_alignment <- do.call("rbind", multi_locus.sequences)
# Update fasta headers
AmpliSeq.full.multi_locus.fasta <- updateLabel(multi_locus.sequences_alignment, labels(multi_locus.sequences_alignment), gsub("\\_multi\\_locus\\ joined.+$","",labels(multi_locus.sequences_alignment)))
# Subset tip labels to the selection
AmpliSeq.full.multi_locus.selected <- AmpliSeq.full.multi_locus.fasta[labels(AmpliSeq.full.multi_locus.fasta) %in% input$selected_files,]
# Convert to a phyDat object, calculate a distance matrix using phangorn, then infer an NJ tree
AmpliSeq.full.multi_locus.selected.phydat <- phyDat(AmpliSeq.full.multi_locus.selected, type = "DNA", levels = NULL)
cat("\nMaking NJ tree\n")
AmpliSeq.full.multi_locus.selected.dna_dist <- dist.ml(AmpliSeq.full.multi_locus.selected.phydat, model="JC69")
AmpliSeq.full.multi_locus.selected.NJ <- NJ(AmpliSeq.full.multi_locus.selected.dna_dist)
midpoint(AmpliSeq.full.multi_locus.selected.NJ)
#cat("\nMaking ML tree\n")
#AmpliSeq.full.multi_locus.selected.phydat_fitGTR <- pml_bb(AmpliSeq.full.multi_locus.selected.phydat, model="GTR+G(4)+I")
#midpoint(AmpliSeq.full.multi_locus.selected.phydat_fitGTR$tree)
})
output$p.NJ.tree <- renderPlot({
# Plot tree
options(ignore.negative.edge=TRUE)
p.AmpliSeq.full.selectedNJ <- ggtree(collatedPhylo() ) +
geom_tiplab(size=text.size.within) +
#coord_cartesian(xlim=c(0,max(ggtree(collatedPhylo() )$data$x)+2)) +
coord_cartesian(xlim=c(0,max(ggtree(collatedPhylo() )$data$x)+0.0001)) +
geom_treescale(fontsize=text.size.within)
p.AmpliSeq.full.selectedNJ
})
# Reactive element to get the number of variant positions in the alignment used for making the tree
SNPslength <- reactive({
req(input$selected_files)
# Read in concatenated SNPs (in fasta format)
SNP.concat.directory <- file.path(parseDirPath(c(home = "~"), input$directory), "snp_aln/")
cat("\nChecking number of sites in SNP alignment\n")
cat("SNP file path:", SNP.concat.directory, "\n")
AmpliSeq.full.fasta.file <- paste0(SNP.concat.directory, "merged.fasta.snp.aln")
cat("SNP file:", AmpliSeq.full.fasta.file)
AmpliSeq.full.fasta.dnaBin <- read.dna(AmpliSeq.full.fasta.file, 'fasta')
length(as.character(AmpliSeq.full.fasta.dnaBin)[1,]) # all sequences are the same length, so just get the length of the first
})
# Display selected files
output$SNPcount <- renderText({
if (is.null(selectedFiles()) || length(selectedFiles()) == 0) {
return("No files selected")
}
paste("There were ", SNPslength(), " SNPs identified in the dataset.", collapse = "")
})
## Now add contextual data
# Specify contextual data
AmpliSeq_contextual.fasta.file <- "/Users/mb29/Treponema/Treponema_Discriminatory_Sites__MinION/nextflow_pipeline_example_run_20240510/MAGUS_context_treemer0.4.multilocus.concat.aln"
cat("\nContextual fasta sequences:",AmpliSeq_contextual.fasta.file,"\n")
# Read in contextual sequence data
ContextualSeqs <- reactive({
(read.dna(AmpliSeq_contextual.fasta.file, 'fasta'))
})
# read in contextual data
ContextualisedTree <- reactive({
req(input$selected_files)
req(ContextualSeqs())
# Read in concatenated SNPs (in fasta format)
# Specify path for data
multi_locus.filepath <- file.path(parseDirPath(c(home = "~"), input$directory), "curated_consensus/")
multi_locus.files <- paste0(multi_locus.filepath, input$selected_files, "_multi_locus.fasta", sep="")
cat("\nChecking multi-locus directory\n")
cat("\nMulti-locus file path:", multi_locus.filepath, "\n")
cat("Multi-locus file list:", multi_locus.files, "\n")
# read fasta files into a list
multi_locus.sequences <- lapply(multi_locus.files, read.dna, format = "fasta")
# convert into an alignment
multi_locus.sequences_alignment <- do.call("rbind", multi_locus.sequences)
# Update fasta headers
AmpliSeq.full.multi_locus.fasta <- updateLabel(multi_locus.sequences_alignment, labels(multi_locus.sequences_alignment), gsub("\\_multi\\_locus\\ joined.+$","",labels(multi_locus.sequences_alignment)))
# Subset tip labels to the selection
AmpliSeq.full.multi_locus.selected <- AmpliSeq.full.multi_locus.fasta[labels(AmpliSeq.full.multi_locus.fasta) %in% input$selected_files,]
# Combine contextual and current sequence data
cat("\nCombining new run seqs with contextual seqs\n")
AmpliSeq_contextual_and_selected.dnabin <- rbind(AmpliSeq.full.multi_locus.selected, ContextualSeqs())
# Convert to a phyDat object, calculate a distance matrix using phangorn, then infer an NJ tree
AmpliSeq_contextual_and_selected.phydat <- phyDat(AmpliSeq_contextual_and_selected.dnabin, type = "DNA", levels = NULL)
# import current and contextual data, then make a NJ tree and infer lineages
# Fit data using NJ and return tree
cat("\nCalculating Tree for Current+Contextual sequences\n")
AmpliSeq_contextual_and_selected_fitNJ <- dist.ml(AmpliSeq_contextual_and_selected.phydat, model="JC69")
AmpliSeq_contextual_and_selected.phydat.NJ <- NJ(AmpliSeq_contextual_and_selected_fitNJ)
AmpliSeq_contextual_and_selected_tree <- midpoint(AmpliSeq_contextual_and_selected.phydat.NJ)
cat("\nOutput contextual tree\n")
AmpliSeq_contextual_and_selected_tree
})
InferredLineages <- reactive({
req(input$selected_files)
req(ContextualisedTree())
cat("\nExtracting metadata from contextual sequence headers\n")
# contextual.metadata <- data.frame(sample=labels(ContextualSeqs())) %>%
# mutate(Lineage=gsub("^.+__","",sample)) %>%
# mutate(Country= gsub("^.+__","", gsub("__SS14","",gsub("__Nichols","",sample))))
contextual.metadata <- data.frame(sample=ContextualisedTree()$tip.label) %>%
filter(grepl('Nichols|SS14', sample)) %>%
mutate(Lineage=gsub("^.+__","",sample)) %>%
mutate(Country= gsub("^.+__","", gsub("__SS14","",gsub("__Nichols","",sample))))
cat("\nShow contextual metadata:\n")
print(contextual.metadata)
#contextual.metadata
# Infer Lineages (Nichols/SS14) for novel samples using MRCA/Descendents phylogenetic method
inferred_Nichols.list <- data.frame(sample= ContextualisedTree()$tip.label[phangorn::Descendants(ContextualisedTree(), phangorn::mrca.phylo(ContextualisedTree(), filter(contextual.metadata, Lineage=="Nichols") %>% pull(sample)))[[1]] ],
Lineage="Nichols")
inferred_SS14.list <- data.frame(sample= ContextualisedTree()$tip.label[phangorn::Descendants(ContextualisedTree(), phangorn::mrca.phylo(ContextualisedTree(), filter(contextual.metadata, Lineage=="SS14") %>% pull(sample)))[[1]] ],
Lineage="SS14")
inferred_lineages <- data.frame(rbind(inferred_Nichols.list, inferred_SS14.list))
cat("\nInferred Lineages:\n")
print(inferred_lineages)
inferred_lineages
})
output$p.contextual.tree <- renderPlot({
req(input$selected_files)
req(ContextualSeqs())
req(ContextualisedTree())
cat("\nCreating initial contextual tree object\n")
# Plot tree
p.AmpliSeq_contextual_and_selected_tree <- ggtree(ContextualisedTree(), ladderise='right') +
#coord_cartesian(xlim=c(0,max(ggtree(fitGTR.tree)$data$x)+2)) +
coord_cartesian(xlim=c(0,max(ggtree(ContextualisedTree(), ladderise='right')$data$x)+0.00030)) +
geom_treescale(fontsize=text.size.within)
cat("\nAdding coloured tips (inferred from current dataset)\n")
p.AmpliSeq_contextual_and_selected_tree <- p.AmpliSeq_contextual_and_selected_tree %<+% data.frame(seq=input$selected_files, study="current") +
geom_tiplab(aes(color = factor(study)), size=text.size.within, align = T, offset=0.000015) +
scale_color_manual(breaks=c("current"), values=c("green4"), na.value = "grey5", name="Current\nSequencing\nRun") +
new_scale_color()
cat("\nNow trying to add inferred Lineage data\n")
p.AmpliSeq_contextual_and_selected_tree <- p.AmpliSeq_contextual_and_selected_tree %<+% InferredLineages() +
geom_tippoint(aes(color=factor(Lineage)), alpha=0.75, size=4) +
scale_color_manual(breaks=c("Nichols","SS14"), values=c("royalblue2", "indianred1"), name="Lineage")
p.AmpliSeq_contextual_and_selected_tree
}, height = 700, width = 550 )
output$p.contextual.tree.ui <- renderUI({
plotOutput("p.contextual.tree", height = 700)
})
ResistanceTable <- reactive({
req(input$selected_files)
variants.filepath <- file.path(parseDirPath(c(home = "~"), input$directory), "variants/merged_gvcf/")
# Function to get the most recent file with suffix _merged.tsv
get_most_recent_file <- function(directory, suffix) {
files <- list.files(directory, pattern = paste0(".*", suffix, "$"), full.names = TRUE)
if (length(files) == 0) {
return(NULL)
}
files_info <- file.info(files)
most_recent_file <- rownames(files_info)[which.max(files_info$mtime)]
return(most_recent_file)
}
latest_variants.file <- get_most_recent_file(variants.filepath, "_merged.tsv")
latest_variants <- read.csv(latest_variants.file, sep=" ", col.names = c("Reference","POS","REF.allele", "ALT.alleles","SampleID", "GT", "GT_allele"), header = F)
# Filter to only include selected samples
latest_variants.selected <- latest_variants %>% filter(SampleID %in% input$selected_files)
# Clean up and summarise
latest_variants.selected <- latest_variants.selected %>%
filter(POS %in% c(235246)) %>%
mutate(ResistanceSite="A2058") %>%
select(SampleID, ResistanceSite, GT_allele) %>%
mutate(Resistant = ifelse(GT_allele=="G", "Resistant", "Sensitive")) %>%
arrange(SampleID) %>%
# combine with lineage information inferred earlier
left_join(InferredLineages(), by=c("SampleID"="sample"))
latest_variants.selected
cat("Compile 23S variants into a table")
print(latest_variants.selected)
})
output$p.Lineage.Resistance.bars <- renderPlot({
req(input$selected_files)
req(ResistanceTable())
# Prepare macrolide resistance bar plot
p.macrolide.Res.bar <- ResistanceTable() %>%
mutate(total.samples=n()) %>%
group_by(Resistant) %>%
mutate(Res.Count=n(), perc.Resistant=round((Res.Count/total.samples)*100,2)) %>%
distinct(Res.Count, perc.Resistant) %>%
ggplot(aes(x=Resistant, y=Res.Count, fill=Resistant)) +
geom_bar(stat='identity', width=0.6) +
theme_minimal() +
x.theme.axis.rotate.angle + theme.text.size + legend.size +
geom_text(aes(x=Resistant, y=Res.Count+1, label = paste(perc.Resistant,"%")), size=text.size.within, inherit.aes = F) +
scale_fill_manual(values=c("grey5", "grey85"), breaks=c("Resistant","Sensitive")) +
labs(y="Sample Count", x="A2058G Macrolide Resistance") + theme(legend.position='none')
# Now prepare Lineage summary plot
p.Lineage.bar <- ResistanceTable() %>%
mutate(total.samples=n()) %>%
group_by(Lineage) %>%
mutate(Lineage.Count=n(), perc.Lineage=round((Lineage.Count/total.samples)*100,2)) %>%
distinct(Lineage.Count, perc.Lineage) %>%
ggplot(aes(x=Lineage, y=Lineage.Count, fill=Lineage)) +
geom_bar(stat='identity', width=0.6) +
#theme_bw() +
theme_minimal() +
x.theme.axis.rotate.angle + theme.text.size + legend.size +
geom_text(aes(x=Lineage, y=Lineage.Count+1, label = paste(perc.Lineage,"%")), size=text.size.within, inherit.aes = F) +
scale_fill_manual(breaks=c("Nichols","SS14"), values=c("royalblue2", "indianred1"), name="Lineage") +
labs(y="Sample Count", x="Lineage") + theme(legend.position='none')
# Now make combined figure using cowplot
plot_grid(p.macrolide.Res.bar, p.Lineage.bar, ncol=2, labels=c("Macrolide Resistance", "Lineage"), label_size = 11, scale=0.95)
})
output$t.resistancetable <- renderDataTable({
req(input$selected_files)
ResistanceTable()
})
}
# Run the application
shinyApp(ui = ui, server = server)