-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdriver.py
230 lines (203 loc) · 8.01 KB
/
driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import importlib
import logging
import os
from typing import Any, Dict, List
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
from graph_compiler import compile
from graph_compiler_utils import SEPFunction
from torch.fx.experimental.proxy_tensor import make_fx
from torchbenchmark.models import (
gemma_2b,
hf_Bert,
hf_GPT2,
hf_GPT2_large,
hf_T5,
hf_T5_large,
moondream2,
open_llama_3b,
timm_vision_transformer_large,
tinyllama,
tinyllava,
torch_multimodal_clip,
)
from torchbenchmark.util.model import BenchmarkModel
from torch.nn.attention import SDPBackend, sdpa_kernel
torch.backends.cuda.enable_flash_sdp(enabled=True)
actual_model_names: List[str] = [
"hf_Bert",
"hf_T5",
"hf_GPT2",
"hf_T5_large",
"hf_GPT2_large",
"timm_vision_transformer_large",
"torch_multimodal_clip",
"tinyllama",
"tinyllava",
"gemma_2b",
"open_llama_3b",
"moondream2",
]
model_names: List[str] = [
"torchbenchmark.models.hf_Bert.Model",
"torchbenchmark.models.hf_GPT2_large.Model",
"torchbenchmark.models.hf_T5_large.Model",
"torchbenchmark.models.timm_vision_transformer_large.Model",
"torchbenchmark.models.hf_GPT2.Model",
"torchbenchmark.models.hf_T5.Model",
"torchbenchmark.models.tinyllama.Model",
"torchbenchmark.models.tinyllava.Model",
"torchbenchmark.models.gemma_2b.Model",
"torchbenchmark.models.open_llama_3b.Model",
"torchbenchmark.models.moondream2.Model",
"torchbenchmark.models.torch_multimodal_clip.Model",
]
model_batch_sizes: Dict[str, int] = {
"torchbenchmark.models.hf_Bert.Model": 32,
"torchbenchmark.models.hf_GPT2_large.Model": 4,
"torchbenchmark.models.hf_T5_large.Model": 4,
"torchbenchmark.models.timm_vision_transformer_large.Model": 16,
"torchbenchmark.models.hf_GPT2.Model": 24,
"torchbenchmark.models.hf_T5.Model": 12,
"torchbenchmark.models.tinyllama.Model": 12,
"torchbenchmark.models.tinyllava.Model": 12,
"torchbenchmark.models.gemma_2b.Model": 4,
"torchbenchmark.models.open_llama_3b.Model": 4,
"torchbenchmark.models.moondream2.Model": 8,
"torchbenchmark.models.torch_multimodal_clip.Model": 32,
}
# class WrappedDummyModel(nn.Module):
# def __init__(self, mod: nn.Module):
# super().__init__()
# self.mod = mod
# def forward(self, *args, **kwargs):
# return SEPFunction.apply(self.mod(*args, **kwargs))
class Experiment:
def __init__(self, model_name: str, batch_size: int, extra_args=[]):
pos = model_name.rfind(".")
module = importlib.import_module(model_name[:pos])
model_class = getattr(module, model_name[(pos + 1) :])
model: BenchmarkModel = model_class(
"train", "cuda", batch_size=batch_size, extra_args=extra_args
)
self.model = model.model
self.model_type = type(model)
self.batch_size = batch_size
self.example_inputs = model.example_inputs
# print(model.__dict__)
# print(self.example_inputs)
param_count = 0
param_tensor_count = 0
for param in self.model.parameters():
if not param.requires_grad:
print("frozen param")
param_count += param.numel()
param_tensor_count += 1
print(f"Model has {param_count} parameters.")
print(f"Model has {param_tensor_count} parameter tensors.")
print(f"Parameter Memory: {torch.cuda.memory_allocated() / 2**30} GiB")
if self.model_type in (
hf_T5.Model,
hf_GPT2.Model,
hf_Bert.Model,
hf_T5_large.Model,
hf_GPT2_large.Model,
tinyllama.Model,
tinyllava.Model,
gemma_2b.Model,
open_llama_3b.Model,
moondream2.Model,
):
def hf_train_step(
model: nn.Module, optim: optim.Optimizer, example_inputs: Any
):
with sdpa_kernel([SDPBackend.FLASH_ATTENTION, SDPBackend.CUDNN_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]):
with torch.autocast(device_type="cuda", dtype=torch.float16):
loss = model(**example_inputs).loss
loss = SEPFunction.apply(loss)
loss.backward()
optim.step()
optim.zero_grad()
self.model.train()
self.train_step = hf_train_step
self.optimizer = model.optimizer
elif self.model_type == timm_vision_transformer_large.Model:
self.loss_fn = model.cfg.loss
self._gen_target = model._gen_target
def timm_vit_train_step(
model: nn.Module, optim: optim.Optimizer, example_inputs: Any
):
output = model(example_inputs)
target = self._gen_target(output.shape[0])
loss = self.loss_fn(output, target)
loss = SEPFunction.apply(loss)
loss.backward()
optim.step()
optim.zero_grad()
self.optimizer = model.cfg.optimizer
self.train_step = timm_vit_train_step
elif self.model_type == torch_multimodal_clip.Model:
self.optimizer = model.optimizer
self.loss_fn = model.loss_fn
self.model.train()
def clip_train_step(
model: nn.Module, optim: optim.Optimizer, example_inputs: Any
):
with torch.autocast(device_type="cuda", dtype=torch.float16):
image_embedding, text_embedding = self.model(*example_inputs)
loss = self.loss_fn(image_embedding, text_embedding)
loss = SEPFunction.apply(loss)
loss.backward()
optim.step()
optim.zero_grad()
self.train_step = clip_train_step
def init_optimizer_states(self):
for param in self.model.parameters():
param.grad = torch.rand_like(param)
self.optimizer.step()
self.optimizer.zero_grad()
def run(self):
self.train_step(self.model, self.optimizer, self.example_inputs)
print("Successful.")
def run_worker(rank, world_size):
logging.getLogger().setLevel(logging.DEBUG if rank == 0 else logging.CRITICAL)
# logging.getLogger().setLevel(logging.DEBUG)
dist.init_process_group("nccl", rank=rank, world_size=world_size)
logging.info(f"Number of visible devices: {torch.cuda.device_count()}")
torch.cuda.set_device(rank)
torch.manual_seed(20)
logging.critical(f"Cuda device: {torch.cuda.current_device()}")
exp = Experiment(model_names[7], model_batch_sizes[model_names[7]])
exp.init_optimizer_states()
compiled_fn = compile()(exp.train_step)
compiled_fn(exp.model, exp.optimizer, exp.example_inputs)
# compiled_gm = make_fx(
# exp.train_step, tracing_mode="fake", _allow_non_fake_inputs=True
# )(exp.model, exp.optimizer, exp.example_inputs)
# print(compiled_gm.graph)
if __name__ == "__main__":
exp = Experiment(model_names[7], model_batch_sizes[model_names[7]])
exp.init_optimizer_states()
torch.cuda.synchronize()
print(f"Memory: {torch.cuda.memory_allocated() / 2**30} GiB")
start_events = [torch.cuda.Event(enable_timing=True) for _ in range(5)]
end_events = [torch.cuda.Event(enable_timing=True) for _ in range(5)]
for i in range(5):
start_events[i].record()
exp.run()
end_events[i].record()
torch.cuda.synchronize()
iter_time = (
sum(start_events[i].elapsed_time(end_events[i]) for i in range(2, 5)) / 3
)
print(f"Iter time: {iter_time} ms")
print(f"Peak Memory: {torch.cuda.max_memory_allocated() / 2**30} GiB")
print(f"Peak Memory Reserved: {torch.cuda.max_memory_reserved() / 2**30} GiB")
exit()
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "29500"
world_size = 2
mp.spawn(run_worker, args=(world_size,), nprocs=world_size, join=True)