-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
86 lines (70 loc) · 3.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from Transforms.transform_constants import *
from experiments import *
from Transforms.single_taxi_transforms import *
def run_single_taxi_env():
env_name = SINGLE_TAXI_EXAMPLE
agent_name = KERAS_DQN
num_states_in_partial_policy = 5
num_of_epochs = 1
num_of_episodes_per_epoch = 10000
default_experiment(agent_name, env_name, num_of_epochs, num_of_episodes_per_epoch, num_states_in_partial_policy)
def run_taxi_env():
env_name = TAXI_EXAMPLE
agent_name = KERAS_DQN
num_states_in_partial_policy = 5
num_of_epochs = 1
num_of_episodes_per_epoch = 100
different_anticipated_policy_size_experiment(agent_name, env_name, num_of_epochs, num_of_episodes_per_epoch)
def run_lunar_lander_env():
env_name = LUNAR_LANDER
agent_name = KERAS_DQN
num_states_in_partial_policy = 5
num_of_epochs = 5
num_of_episodes_per_epoch = 500
default_experiment(agent_name, env_name, num_of_epochs, num_of_episodes_per_epoch, num_states_in_partial_policy)
def run_search_transform_taxi_env_example_colab():
env_name = SEARCH_TRANSFORM_TAXI_ENV
anticipated_policy = ANTICIPATED_POLICY
num_of_episodes_per_epoch = ITER_NUM
agent_name = KERAS_DQN
original_env = get_env(SINGLE_TAXI_EXAMPLE)
search_taxi_env = get_env(env_name)
agent = load_existing_agent(search_taxi_env, agent_name, env_name)
result = {}
# evaluate the performance of the agent
transformed_evaluation_result = rl_agent.run(agent, num_of_episodes_per_epoch, method=EVALUATE)
# check if the anticipated policy is achieved in trans_env
anticipated_policy_achieved, success_rate = is_anticipated_policy_achieved(original_env, agent, anticipated_policy,
search_taxi_env)
result[env_name] = load_pkl_file(TRAINED_AGENT_RESULT_FILE_PATH)
if anticipated_policy_achieved:
result[env_name][GOT_AN_EXPLANATION] = True
if result[env_name][GOT_AN_EXPLANATION]:
print(f"\nexplanation found! on the {env_name} environment.")
explanation = map_actions_to_explanation(original_env, agent, search_taxi_env, anticipated_policy)
for transform_name, actions in explanation.items():
print(f"transform name: {transform_name} for mapping action {actions[0]} to {actions[1]}")
print(explanation)
else:
print("no explanation found:-(")
if __name__ == '__main__':
# preconditions = load_pkl_file(PRECONDITIONS_PATH)
# agent_name = KERAS_CEM
# env_name = TAXI_EXAMPLE
# new_env = get_env(env_name)
#
# agent, restored = make_or_restore_model(new_env, agent_name, env_name)
#
# print(f"\nTraining and evaluating the {agent_name} on \"{env_name}\" environment")
# train_result = rl_agent.run(agent, 1, method=TRAIN)
# rl_agent.run(agent, 5, method=EVALUATE)
# import csv
# frozen_lake_satisfaction_rates = []
# with open('results/satisfaction_rate_frozen_lake.csv', newline='') as csvfile:
# spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|')
# for row in spamreader:
# frozen_lake_satisfaction_rates.append(float(row[1]))
# print(row)
from create_single_taxi_transforms import *
success_rates = check_success_rate()
print("DONE!")