-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapi.py
61 lines (37 loc) · 1.52 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
from flask import Flask, request, jsonify
from QPSimilarity.constants import Constant
from QPSimilarity.utils import PretrainModelUtils
from QPSimilarity.predict import Predict
from QPSimilarity.train import Train
constant = Constant()
pretrained = PretrainModelUtils()
word_to_index, index_to_word, word_to_vec_map = pretrained.readPretrainedModel(glove_path=constant.glove_path)
app = Flask(__name__)
@app.route("/")
def default():
return 'Please use right end point'
@app.route("/predict", methods=['POST'])
def predict_api():
data = request.json
question1 = data['question1']
question2 = data['question2']
question_array = np.array([question1, question2]).reshape(1,2)
predict = Predict(word_to_index, word_to_vec_map)
prediction = predict.predictOnTest(question_array)
data['result'] = str(prediction[0][0])
result_json = jsonify(data)
return result_json
@app.route("/train", methods=['GET','POST'])
def train_api():
train_metric = request.json
trainset_split = train_metric['split']
num_epochs = train_metric['epochs']
features = [value for key , value in constant.features.items()]
target = [value for key , value in constant.labels.items()]
training = Train(word_to_index, word_to_vec_map, features=features, target=target)
validation_res = training.trainModel(trainset_split, num_epochs)
result = {'validation_accuracy': str(validation_res)}
return jsonify(result)
if __name__ == "__main__":
app.run()