-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
155 lines (133 loc) · 4.96 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
import scipy
import scipy.ndimage
def time_crop((time_s, signal), time):
"""
Crop supplied timepoints and signal to given timepoints.
Parameters
(time_s, signal): arrays, timepoints and signal to crop
time: array, timepoints within which to crop
Returns
(time_s, signal): arrays, cropped timepoints and signal
"""
argmin = find_nearest(time_s, time[0], ordered=True)
argmax = find_nearest(time_s, time[-1], ordered=True)
return (time_s[argmin:argmax], signal[argmin:argmax])
def find_nearest(array, value, ordered=False):
"""
Find index of first value in array closest to given value.
Parameters
array: NumPy array
value: int or float
Returns
int: argument of array value closest to value supplied
"""
if ordered:
idx = np.searchsorted(array, value, side="left")
if idx > 0 and (idx == len(array) or np.fabs(value - array[idx-1]) < np.fabs(value - array[idx])):
return idx-1
else:
return idx
else:
return np.abs(array - value).argmin()
def flip_horizontal(frames):
"""
Flip frame array horizontally.
Parameters
frames: frame array with dimension (frame count, y pixels, x pixels)
"""
return frames[:, :, ::-1]
def average_frames(frames, interval):
"""
Calculate a running average for the given frames.
Parameters
frames: NumPy array with dimension (frame count, y pixels, x pixels)
interval: int, number of frames to average over
Returns
NumPy array: repeated averages [a a a... b b b... c c c... d d d...]
for each [interval] frames supplied
"""
frame_count = frames.shape[0]
halfint = interval//2
averages = np.zeros(frames.shape)
for i in range(frame_count):
if i < halfint:
averages[i] = np.mean(frames[:interval], axis=0)
elif frame_count - i < halfint:
averages[i] = np.mean(frames[-interval:], axis=0)
else:
averages[i] = np.mean(frames[i-halfint:i+halfint], axis=0)
return averages
def subtract_average(frames, interval):
"""
Subtract running average of frames to emphasize fluctuations and
remove background.
Parameters
frames: NumPy array with dimension (frame count, y pixels, x pixels)
interval: int, number of frames to average over
"""
# Truncate video frame count to largest multiple of interval
remainder = frames.shape[0] % interval
if remainder != 0: frames = frames[:-remainder]
return frames - average_frames(frames, interval)
def subtract_min(frames, interval, correct_saturation=True):
"""
Subtract running minimum value of each pixel to emphasize fluctuations.
Parameters
frames: NumPy array with dimension (frame count, y pixels, x pixels)
interval: int, number of frames in which to look for min
"""
frame_count = frames.shape[0]
halfint = interval//2
mins = np.zeros(frames.shape)
upper_lim = frame_count - halfint
for f in xrange(frame_count):
if halfint <= f <= upper_lim:
mins[f] = np.min(frames[f-halfint:f+halfint], axis=0)
elif f < halfint:
mins[f] = np.min(frames[:interval], axis=0)
else:
mins[f] = np.min(frames[-interval:], axis=0)
subtracted = frames - mins
del mins
# Set saturated pixels to the min value in their respective frames
if correct_saturation:
frames_diff = frames - subtracted
max_brightness = np.max(frames)
# Get saturated pixel locations as ([frames], [pixel is], [pixel js])
sat_spots = np.where(frames_diff > 4040)
for i, f in enumerate(sat_spots[0]):
subtracted[f, sat_spots[1][i], sat_spots[2][i]] = np.min(subtracted[f])
del frames_diff, sat_spots
return subtracted
def gauss(frames, level=3):
"""
Apply a Gaussian filter to the given frames.
"""
return scipy.ndimage.gaussian_filter(frames, level)
def sobel(frames):
"""
Apply a Sobel filter to the given frames.
"""
for i in xrange(len(frames)):
sx = scipy.ndimage.sobel(frames[i], axis=0, mode='constant')
sy = scipy.ndimage.sobel(frames[i], axis=1, mode='constant')
frames[i] = np.hypot(sx, sy)
return frames
def kill_sobel_edges(frames):
"""
Set edges of sobel-filtered frames to constant, average values.
"""
frames[:, :, 0] = np.ones((frames.shape[0], frames.shape[1]))*frames.mean()
frames[:, 0, :] = np.ones((frames.shape[0], frames.shape[1]))*frames.mean()
return frames
def sum_frames(frames):
"""
Sum pixel values for each frame to see total changes in intensity.
Parameters
frames: NumPy array with dimension (frame count, y pixels, x pixels)
Returns
sum_frames: NumPy array with dimension (frame count)
"""
sum_frames = [np.sum(frames[i]) for i in xrange(frames.shape[0])]
return sum_frames