diff --git a/simulate/parameters.py b/simulate/parameters.py index f3285f4..bf5d8d7 100644 --- a/simulate/parameters.py +++ b/simulate/parameters.py @@ -88,23 +88,27 @@ def build_population(agent_type, parameters, seed=None, dphm=1500): init_portfolio["PermGroFac"] = [1.0] # no drift in perm income # risk free return, set to 1 to focus on equity premium init_portfolio["Rfree"] = 1.0 -init_portfolio["RiskyAvg"] = 1.05 # eq_prem is RiskyAvg - Rfree = 0.05 +#init_portfolio["RiskyAvg"] = 1.05 # eq_prem is RiskyAvg - Rfree = 0.05 init_portfolio["LivPrb"] = [1.0] # no death lucas0_agent_population_params = init_portfolio.copy() +# should match quarterly parameters in macro/macro_parameters lucas0_agent_population_params.update( { "cycles": 0, # issue 186 # ln(16.35182266895578) from Numerical Buffer Stock notebook using default params "aNrmInitMean": 2.79433936935, # calculated using dashboard from default init_portfolio stats # "aNrmInitMean": 6 - # "LivPrb": [0.98**0.25], -- Should this be adjusted? - "PermGroFac": 1.0, - "Rfree": 1.0, + 'PermShkStd': [0.05], + 'TranShkStd': [0.4], + 'UnempPrb': 0, + 'RiskyAvg': 1.0122722344290394, # quarterly, annually ~1.05, for 0.05 eq_prem + 'RiskyStd': 0.1, # quarterly + 'aXtraMax': 400, ### These are placeholders that will be set when the system is set up. "CRRA": 5, - "DiscFac": 0.90, + "DiscFac": 0.974, # quarterly "ex_post": None, # ex post heterogeneous parameters over which to merge solutions } )