diff --git a/simulate/parameters.py b/simulate/parameters.py index 0c0c249..46ce481 100644 --- a/simulate/parameters.py +++ b/simulate/parameters.py @@ -4,33 +4,13 @@ from HARK.distribution import Uniform from xarray import DataArray -dist_params = { - "CRRA": {"bot": 2, "top": 10, "n": 3}, # Chosen for "interesting" results - "DiscFac": {"bot": 0.936, "top": 0.978, "n": 2}, # from CSTW "MPC" results -} - # Get empirical data from Sabelhaus and Song ssvp = sabelhaus_song_var_profile() # Assume all the agents are 40 for now. # We will need to make more coherent assumptions about the timing and age of the population later. -# Scaling from annual to quarterly idx_40 = ssvp["Age"].index(40) -### parameters shared by all agents -agent_parameters = { - "aNrmInitStd": 0.0, - "LivPrb": [0.98**0.25], - "PermGroFac": [1.01**0.25], - "pLvlInitMean": 1.0, - # initial distribution of permanent income - "pLvlInitStd": 0.0, - "Rfree": 1.0, - "TranShkStd": [ssvp["TranShkStd"][idx_40] / 2], - # Adjust non-multiplicative shock to quarterly - "PermShkStd": [ssvp["PermShkStd"][idx_40] ** 0.25], -} - ### new dictionary for new Agent Population agent_population_params = { @@ -40,6 +20,7 @@ "pLvlInitMean": 1.0, "pLvlInitStd": 0.0, "Rfree": 1.0, + # Scaling from annual to quarterly "TranShkStd": DataArray([ssvp["TranShkStd"][idx_40] / 2], dims="age"), "PermShkStd": DataArray([ssvp["PermShkStd"][idx_40] ** 0.25], dims="age"), }