-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsvf_test.py
235 lines (208 loc) · 9.28 KB
/
svf_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""
Usage:
svf_test.py (--table STR) [--alg STR] [--param STR] [--verbose]
Description:
Smart Variant Filtration (SVF) test
Arguments:
--table STR Table with categorized variants used for learning
--alg STR Algorithm to test (ADA, KNN, SVM, RF, QDA, MLP [default: ADA]
Options:
-h, --help Show this help message and exit.
-v, --version Show version and exit.
--verbose Log output
--param STR Classifier parameters
Examples:
python svf_test.py --table <raw_table> --alg KNN
"""
# Load libraries
import pandas
from sklearn import model_selection
from sklearn.metrics import recall_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neural_network import MLPClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
#from sklearn.model_selection import ShuffleSplit
#from imblearn.over_sampling import SMOTE
#from sklearn.preprocessing import StandardScaler
#from sklearn.preprocessing import normalize
import operator
from docopt import docopt
def build_AdaBoostClassifier(alg, param = None):
models = []
# n_estimators : integer, optional (default=50)
# The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early.
n_estimators = [150, 200, 300, 400, 500, 1000]#[30, 50, 70, 100, 120]
# learning_rate : float, optional (default=1.)
# Learning rate shrinks the contribution of each classifier by learning_rate. There is a trade-off between learning_rate and n_estimators.
learning_rate = [0.5, 1.0, 1.2, 1.5, 1.7]
algorithm = ['SAMME', 'SAMME.R']
if param:
n_estimators = [int(param.split('-')[1])]
learning_rate = [float(param.split('-')[2])]
algorithm = [param.split('-')[3]]
for n_e in n_estimators:
for l_r in learning_rate:
for a in algorithm:
class_name = alg + '\t' + str(n_e) + '-' + str(l_r) + '-' + a
models.append((class_name, AdaBoostClassifier(n_estimators=n_e, learning_rate=l_r, algorithm=a)))
print class_name
return models
def build_KNeighborsClassifier(alg, param = None):
models = []
neighbors = filter(lambda x: x % 4 != 0, list(range(1,50)))
neighbors = [7, 9, 10, 13, 14, 15, 17, 19, 22, 25, 29, 30, 31, 33, 34, 35, 38, 39, 41, 43, 45, 49, 53]
algorithms = ['ball_tree', 'kd_tree']
p_distance = [1, 2]
if param:
neighbors = [int(param.split('-')[1])]
algorithms = [param.split('-')[2]]
p_distance = [int(param.split('-')[3])]
for k in neighbors:
for a in algorithms:
for p in p_distance:
class_name = alg + '\t' + str(k) + '-' + str(a) + '-' + str(p)
models.append((class_name,KNeighborsClassifier(n_neighbors=k, algorithm=a, p=p, n_jobs=2)))
print class_name
return models
def build_SVM(alg, param = None):
models = []
C = [0.2, 0.6, 1.0, 1.5, 2.0, 4.0, 10.0, 100.0, 1000.0]
kernels = ['linear', 'rbf']
if param:
C = [float(param.split('-')[1])]
kernels = [param.split('-')[2]]
for c in C:
for k in kernels:
class_name = alg + '\t' + str(c) + '-' + str(k)
models.append((class_name,SVC(C=c, kernel=k)))
print class_name
return models
def build_RandomForestClassifier(alg, param = None):
models = []
n_estimators = [5, 10, 20, 50, 100, 150, 200, 300, 500, 1000]
criterion = ['gini', 'entropy']
if param:
n_estimators = [int(param.split('-')[1])]
criterion = [param.split('-')[2]]
for ne in n_estimators:
for c in criterion:
class_name = alg + '\t' + str(ne) + '-' + str(c)
models.append((class_name, RandomForestClassifier(n_estimators=ne, criterion=c, n_jobs=2)))
print class_name
return models
def build_QuadraticDiscriminantAnalysis(alg, param = None):
models = []
tol = [0.00001, 0.00005, 0.0001, 0.0005, 0.001]
if param:
tol = [float(param.split('-')[1])]
for t in tol:
class_name = alg + '\t' + str(t)
models.append((class_name, QuadraticDiscriminantAnalysis(tol=t)))
print class_name
return models
def build_MLPClassifier(alg, param = None):
models = []
hidden_layer_sizes = [50, 100, 150, 250, 500, (10,10), (20,25), (30,50), (10,10,10), (20,30,40), (30,50,70)]
activation = ['identity', 'logistic', 'tanh', 'relu']
solver = ['lbfgs', 'sgd', 'adam']
alpha = [0.00001, 0.0001, 0.001]
if param:
hidden_layer_sizes_arr = (param.split('-')[1])
hidden_layer_sizes = [tuple(map(int, hidden_layer_sizes_arr.split(',')))]
activation = [param.split('-')[2]]
solver = [param.split('-')[3]]
for h in hidden_layer_sizes:
for a in activation:
for s in solver:
class_name = alg + '\t' + str(h).strip(')').replace(' ','').strip('(') + '-'+str(a)+'-'+str(s)
models.append(((class_name, MLPClassifier(hidden_layer_sizes=h, activation=a, solver=s))))
print class_name
return models
def build_model(alg, param = None):
switcher = {
'ADA': build_AdaBoostClassifier,
'KNN': build_KNeighborsClassifier,
'SVM': build_SVM,
'RF': build_RandomForestClassifier,
'QDA': build_QuadraticDiscriminantAnalysis,
'MLP': build_MLPClassifier,
}
# Get the function from switcher dictionary
func = switcher.get(alg)
# Execute the function
return func(alg, param)
args = docopt(__doc__, version='1.0')
verbose = args['--verbose']
# Read training data
variant_table = args['--table']
param = args['--param']
# Load dataset
#variant_table = 'data/wgs/HG001_50x_wgs_indels.table'
#variant_table = 'data/HG001_NIST7035.rep.indels.table'
df = pandas.read_csv(variant_table, sep = '\t')
df.__delitem__('CHROM')
df.__delitem__('POS')
df = df.fillna(0.)
# Split-out validation df
mask = df.iloc[:,-1] == 'TP'
df.loc[mask, df.columns[-1]] = int(1)
mask = ~mask
df.loc[mask, df.columns[-1]] = int(0)
array = df.values
X = array[:,0:7]
Y = array[:,8]
validation_size = 0.
seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X, Y, test_size=validation_size, random_state=seed)
scoring = 'f1'
if param:
alg = param.split('-')[0] # Override alg setting
else:
alg = args['--alg']
models = build_model(alg, param) # Build classifier model
filename = variant_table.split('/').pop()
basename = '.'.join(filename.split('.')[0:-1])
out_name = alg + '_' + basename + '.tsv'
f = open(out_name, 'w')
f_sort = open('sorted_' + out_name, 'w')
header = 'Algorithm\tParameters\tStd\tMean'
f.write(header + '\n')
f_sort.write(header + '\n')
# evaluate each model in turn
results = []
names = []
stats = {}
kfold = model_selection.KFold(n_splits=10, random_state=seed)
for name, model in models:
#kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, X_train, Y_train.astype(int), cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = name + '\t' + "{:.4f}".format(cv_results.std())
stats[msg] = "{:.5f}".format(cv_results.mean())
msg = msg + '\t' + "{:.5f}".format(cv_results.mean())
print(msg)
f.write(msg + '\n')
msg = ('#'*15 + ' S O R T E D ' + '#'*15)
print msg
stats = sorted(stats.items(), key=operator.itemgetter(1))
# Compare Algorithms
for it in stats:
msg = str(it[0] + '\t' + it[1]).replace('\\t', '\t')
print msg
f_sort.write(msg + '\n')
f.close()
f_sort.close()
# Copyright 2018 Seven Bridges Genomics Inc. All rights reserved.
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.