forked from andri27-ts/Reinforcement-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPPO.py
350 lines (271 loc) · 12 KB
/
PPO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import numpy as np
import gym
from tensorboardX import SummaryWriter
import datetime
from collections import namedtuple
from collections import deque
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn.utils.clip_grad import clip_grad_norm_
class A2C_policy(nn.Module):
'''
Policy neural network
'''
def __init__(self, input_shape, n_actions):
super(A2C_policy, self).__init__()
self.lp = nn.Sequential(
nn.Linear(input_shape[0], 32),
nn.ReLU(),
nn.Linear(32, 32),
nn.ReLU())
self.mean_l = nn.Linear(32, n_actions[0])
self.mean_l.weight.data.mul_(0.1)
self.var_l = nn.Linear(32, n_actions[0])
self.var_l.weight.data.mul_(0.1)
self.logstd = nn.Parameter(torch.zeros(n_actions[0]))
def forward(self, x):
ot_n = self.lp(x.float())
return F.tanh(self.mean_l(ot_n))
class A2C_value(nn.Module):
'''
Actor neural network
'''
def __init__(self, input_shape):
super(A2C_value, self).__init__()
self.lp = nn.Sequential(
nn.Linear(input_shape[0], 32),
nn.ReLU(),
nn.Linear(32, 32),
nn.ReLU(),
nn.Linear(32, 1))
def forward(self, x):
return self.lp(x.float())
class Env:
'''
Environment class
'''
game_rew = 0
last_game_rew = 0
game_n = 0
last_games_rews = [-200]
n_iter = 0
def __init__(self, env_name, n_steps, gamma, gae_lambda, save_video=False):
super(Env, self).__init__()
# create the new environment
self.env = gym.make(env_name)
self.obs = self.env.reset()
self.n_steps = n_steps
self.action_n = self.env.action_space.shape
self.observation_n = self.env.observation_space.shape[0]
self.gamma = gamma
self.gae_lambda = gae_lambda
# CHANGED
def steps(self, agent_policy, agent_value):
'''
Execute the agent n_steps in the environment
'''
memories = []
for s in range(self.n_steps):
self.n_iter += 1
# get the agent policy
ag_mean = agent_policy(torch.tensor(self.obs))
# get an action following the policy distribution
logstd = agent_policy.logstd.data.cpu().numpy()
action = ag_mean.data.cpu().numpy() + np.exp(logstd) * np.random.normal(size=logstd.shape)
#action = np.random.normal(loc=ag_mean.data.cpu().numpy(), scale=torch.sqrt(ag_var).data.cpu().numpy())
action = np.clip(action, -1, 1)
state_value = float(agent_value(torch.tensor(self.obs)))
# Perform a step in the environment
new_obs, reward, done, _ = self.env.step(action)
# Update the memories with the last interaction
if done:
# change the reward to 0 in case the episode is end
memories.append(Memory(obs=self.obs, action=action, new_obs=new_obs, reward=0, done=done, value=state_value, adv=0))
else:
memories.append(Memory(obs=self.obs, action=action, new_obs=new_obs, reward=reward, done=done, value=state_value, adv=0))
self.game_rew += reward
self.obs = new_obs
if done:
print('#####',self.game_n, 'rew:', int(self.game_rew), int(np.mean(self.last_games_rews[-100:])), np.round(reward,2), self.n_iter)
# reset the environment
self.obs = self.env.reset()
self.last_game_rew = self.game_rew
self.game_rew = 0
self.game_n += 1
self.n_iter = 0
self.last_games_rews.append(self.last_game_rew)
# compute the discount reward of the memories and return it
return self.generalized_advantage_estimation(memories)
def generalized_advantage_estimation(self, memories):
'''
Calculate the advantage diuscounted reward as in the paper
'''
upd_memories = []
run_add = 0
for t in reversed(range(len(memories)-1)):
if memories[t].done:
run_add = memories[t].reward
else:
sigma = memories[t].reward + self.gamma * memories[t+1].value - memories[t].value
run_add = sigma + run_add * self.gamma * self.gae_lambda
## NB: the last memoy is missing
# Update the memories with the discounted reward
upd_memories.append(Memory(obs=memories[t].obs, action=memories[t].action, new_obs=memories[t].new_obs, reward=run_add + memories[t].value, done=memories[t].done, value=memories[t].value, adv=run_add))
return upd_memories[::-1]
def log_policy_prob(mean, std, actions):
# policy log probability
act_log_softmax = -((mean-actions)**2)/(2*torch.exp(std).clamp(min=1e-4)) - torch.log(torch.sqrt(2*math.pi*torch.exp(std)))
return act_log_softmax
def compute_log_policy_prob(memories, nn_policy, device):
'''
Run the policy on the observation in the memory and compute the policy log probability
'''
n_mean = nn_policy(torch.tensor(np.array([m.obs for m in memories], dtype=np.float32)).to(device))
n_mean = n_mean.type(torch.DoubleTensor)
logstd = agent_policy.logstd.type(torch.DoubleTensor)
actions = torch.DoubleTensor(np.array([m.action for m in memories])).to(device)
return log_policy_prob(n_mean, logstd, actions)
def clipped_PPO_loss(memories, nn_policy, nn_value, old_log_policy, adv, epsilon, writer, device):
'''
Clipped PPO loss as in the paperself.
It return the clipped policy loss and the value loss
'''
# state value
rewards = torch.tensor(np.array([m.reward for m in memories], dtype=np.float32)).to(device)
value = nn_value(torch.tensor(np.array([m.obs for m in memories], dtype=np.float32)).to(device))
# Value loss
vl_loss = F.mse_loss(value.squeeze(-1), rewards)
new_log_policy = compute_log_policy_prob(memories, nn_policy, device)
rt_theta = torch.exp(new_log_policy - old_log_policy.detach())
adv = adv.unsqueeze(-1) # add a dimension because rt_theta has shape: [batch_size, n_actions]
pg_loss = -torch.mean(torch.min(rt_theta*adv, torch.clamp(rt_theta, 1-epsilon, 1+epsilon)*adv))
return pg_loss, vl_loss
def test_game(tst_env, agent_policy, test_episodes):
'''
Execute test episodes on the test environment
'''
reward_games = []
steps_games = []
for _ in range(test_episodes):
obs = tst_env.reset()
rewards = 0
steps = 0
while True:
ag_mean = agent_policy(torch.tensor(obs))
action = np.clip(ag_mean.data.cpu().numpy().squeeze(), -1, 1)
next_obs, reward, done, _ = tst_env.step(action)
steps += 1
obs = next_obs
rewards += reward
if done:
reward_games.append(rewards)
steps_games.append(steps)
obs = tst_env.reset()
break
return np.mean(reward_games), np.mean(steps_games)
Memory = namedtuple('Memory', ['obs', 'action', 'new_obs', 'reward', 'done', 'value', 'adv'], verbose=False, rename=False)
# Hyperparameters
ENV_NAME = 'BipedalWalker-v2'
#ENV_NAME = 'BipedalWalkerHardcore-v2'
MAX_ITER = 500000
BATCH_SIZE = 64
PPO_EPOCHS = 7
device = 'cpu'
CLIP_GRADIENT = 0.2
CLIP_EPS = 0.2
TRAJECTORY_SIZE = 2049
GAE_LAMBDA = 0.95
GAMMA = 0.99
## Test Hyperparameters
test_episodes = 5
best_test_result = -1e5
save_video_test = True
N_ITER_TEST = 100
POLICY_LR = 0.0004
VALUE_LR = 0.001
now = datetime.datetime.now()
date_time = "{}_{}.{}.{}".format(now.day, now.hour, now.minute, now.second)
load_model = False
checkpoint_name = "checkpoints/..."
if __name__ == '__main__':
# Create the environment
env = Env(ENV_NAME, TRAJECTORY_SIZE, GAMMA, GAE_LAMBDA)
writer_name = 'PPO_'+ENV_NAME+'_'+date_time+'_'+str(POLICY_LR)+'_'+str(VALUE_LR)+'_'+str(TRAJECTORY_SIZE)+'_'+str(BATCH_SIZE)
writer = SummaryWriter(log_dir='content/runs/'+writer_name)
# create the test environment
test_env = gym.make(ENV_NAME)
if save_video_test:
test_env = gym.wrappers.Monitor(test_env, "VIDEOS/TEST_VIDEOS_"+writer_name, video_callable=lambda episode_id: episode_id%10==0)
# initialize the actor-critic NN
agent_policy = A2C_policy(test_env.observation_space.shape, test_env.action_space.shape).to(device)
agent_value = A2C_value(test_env.observation_space.shape).to(device)
# initialize policy and value optimizer
optimizer_policy = optim.Adam(agent_policy.parameters(), lr=POLICY_LR)
optimizer_value = optim.Adam(agent_value.parameters(), lr=VALUE_LR)
# Do you want to load a trained model?
if load_model:
print('> Loading checkpoint {}'.format(checkpoint_name))
checkpoint = torch.load(checkpoint_name)
agent_policy.load_state_dict(checkpoint['agent_policy'])
agent_value.load_state_dict(checkpoint['agent_value'])
optimizer_policy.load_state_dict(checkpoint['optimizer_policy'])
optimizer_value.load_state_dict(checkpoint['optimizer_value'])
experience = []
n_iter = 0
while n_iter < MAX_ITER:
n_iter += 1
batch = env.steps(agent_policy, agent_value)
# Compute the policy probability with the old policy network
old_log_policy = compute_log_policy_prob(batch, agent_policy, device)
# Gather the advantage from the memory..
batch_adv = np.array([m.adv for m in batch])
# .. and normalize it to stabilize network
batch_adv = (batch_adv - np.mean(batch_adv)) / (np.std(batch_adv) + 1e-7)
batch_adv = torch.tensor(batch_adv).to(device)
# variables to accumulate losses
pol_loss_acc = []
val_loss_acc = []
# execute PPO_EPOCHS epochs
for s in range(PPO_EPOCHS):
# compute the loss and optimize over mini batches of size BATCH_SIZE
for mb in range(0, len(batch), BATCH_SIZE):
mini_batch = batch[mb:mb+BATCH_SIZE]
minib_old_log_policy = old_log_policy[mb:mb+BATCH_SIZE]
minib_adv = batch_adv[mb:mb+BATCH_SIZE]
# Compute the PPO clipped loss and the value loss
pol_loss, val_loss = clipped_PPO_loss(mini_batch, agent_policy, agent_value, minib_old_log_policy, minib_adv, CLIP_EPS, writer, device)
# optimize the policy network
optimizer_policy.zero_grad()
pol_loss.backward()
optimizer_policy.step()
# optimize the value network
optimizer_value.zero_grad()
val_loss.backward()
optimizer_value.step()
pol_loss_acc.append(float(pol_loss))
val_loss_acc.append(float(val_loss))
# add scalars to the tensorboard
writer.add_scalar('pg_loss', np.mean(pol_loss_acc), n_iter)
writer.add_scalar('vl_loss', np.mean(val_loss_acc), n_iter)
writer.add_scalar('rew', env.last_game_rew, n_iter)
writer.add_scalar('10rew', np.mean(env.last_games_rews[-100:]), n_iter)
# Test the agent
if n_iter % N_ITER_TEST == 0:
test_rews, test_stps = test_game(test_env, agent_policy, test_episodes)
print(' > Testing..', n_iter,test_rews, test_stps)
# if it achieve the best results so far, save the models
if test_rews > best_test_result:
torch.save({
'agent_policy': agent_policy.state_dict(),
'agent_value': agent_value.state_dict(),
'optimizer_policy': optimizer_policy.state_dict(),
'optimizer_value': optimizer_value.state_dict(),
'test_reward': test_rews
}, 'checkpoints/checkpoint_'+writer_name+'.pth.tar')
best_test_result = test_rews
print('=> Best test!! Reward:{:.2f} Steps:{}'.format(test_rews, test_stps))
writer.add_scalar('test_rew', test_rews, n_iter)
writer.close()