-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_spectrum_table.py
117 lines (97 loc) · 3.95 KB
/
make_spectrum_table.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import pandas as pd
import numpy as np
from collections import OrderedDict
from astropy import units as u, constants as cst
"""
Little script to grab all the results of spectral fits and make a nice latex table
(9 fits total)
"""
def get_chains(gravity=False, sinfoni=False, model='bt-settl-cifist', gp=False, teff_prior=None):
header = ['teff', 'logg']
if model == 'exo-rem':
header += ['co', 'feh']
header += ['rad','plx']
name = ''
if gravity:
name += 'gravity_'
if sinfoni:
name += 'sinfoni_'
name += 'jwst_'
if not gp:
name += 'nosphereGP_'
else:
header += ['gp_length_scale','gp_amp']
if sinfoni:
header += ['rv_sinfoni']
if teff_prior is not None:
name += '{}_'.format(teff_prior)
header += ['']
name += model
chains_file = 'results/{}/multinest/post_equal_weights.dat'.format(name)
chains = pd.read_csv(chains_file, delim_whitespace=True, names=header)
return chains
models = OrderedDict()
models['\\texttt{BT-Settl} (G only, yes GP)'] = get_chains(gravity=True, gp=True, teff_prior='teffhi')
models['\\texttt{BT-Settl} (G only, yes GP) (teff lo)'] = get_chains(gravity=True, gp=True, teff_prior='tefflo')
models['\\texttt{BT-Settl} (Si only, yes GP)'] = get_chains(sinfoni=True, gp=True, teff_prior='teffhi')
models['\\texttt{BT-Settl} (Si only, yes GP) (teff lo)'] = get_chains(sinfoni=True, gp=True, teff_prior='tefflo')
models['\\texttt{BT-Settl} (G only, no GP)'] = get_chains(gravity=True, teff_prior='teffhi')
models['\\texttt{BT-Settl} (G only, no GP) (teff lo)'] = get_chains(gravity=True, teff_prior='tefflo')
models['\\texttt{BT-Settl} (Si only, no GP)'] = get_chains(sinfoni=True, teff_prior='teffhi')
models['\\texttt{BT-Settl} (Si only, no GP) (teff lo)'] = get_chains(sinfoni=True, teff_prior='tefflo')
models['\\texttt{Exo-REM} (Si+G, yes GP)'] = get_chains(model='exo-rem', sinfoni=True, gravity=True, gp=True, teff_prior=None)
def format_post(array, decimals=0):
quantiles = np.quantile(array, [.16,.5,.84])
median = np.round(quantiles[1], decimals=decimals)
plus = np.round(quantiles[2] - quantiles[1], decimals=decimals)
minus = np.round(quantiles[1] - quantiles[0], decimals=decimals)
if decimals <= 0:
plus = int(plus)
minus = int(minus)
median = int(median)
if plus == minus:
return '${}\\pm{}$'.format(median, minus)
else:
return '${}^{{+{}}}_{{-{}}}$'.format(median, plus, minus)
def calc_lum(radius, teff):
lum_planet = (
4.0 * np.pi *
(radius * cst.R_jup)**2 *
cst.sigma_sb *
(teff * u.K)**4 /
cst.L_sun
)
return np.log10(lum_planet)
for model_name in models.keys():
print_model_name = model_name
if '(teff lo)' in model_name:
print_model_name = ''
if not 'no GP' in model_name:
gp_amp = format_post(models[model_name].gp_amp.values, decimals=1)
gp_len = format_post(np.exp(models[model_name].gp_length_scale.values), decimals=1)
else:
gp_amp = '--'
gp_len = '--'
if 'Exo-REM' not in model_name:
co = '--'
feh = '--'
else:
co = format_post(models[model_name].co.values, decimals=2)
feh = format_post(models[model_name].feh.values, decimals=3)
if 'Si' in model_name:
rv = format_post(models[model_name].rv_sinfoni.values, decimals=0)
else:
rv = '--'
lum = calc_lum(models[model_name].rad.values, models[model_name].teff.values)
print(
'{} & {} & {} & {} & {} & {} & {} & {} & {} & {}\\\\'.format(
print_model_name,
format_post(models[model_name].teff.values),
format_post(models[model_name].logg.values, decimals=2),
format_post(models[model_name].plx.values, decimals=2),
gp_len, gp_amp, co, feh,
format_post(models[model_name].rad.values, decimals=2),
rv,
format_post(lum, decimals=2),
)
)