diff --git a/examples/splitlearning_titanic/client/backward.py b/examples/splitlearning_titanic/client/backward.py index ec7f7d983..63de493d1 100644 --- a/examples/splitlearning_titanic/client/backward.py +++ b/examples/splitlearning_titanic/client/backward.py @@ -17,10 +17,10 @@ def backward_pass(gradient_path, client_id): - """Load gradients from in_gradients_path, load the embeddings, and perform a backward pass to update + """Load gradients from in_gradients_path, load the embeddings, and perform a backward pass to update the parameters of the client model. Save the updated model to out_model_path. """ - # load client model with parameters + # load client model with parameters client_model = load_client_model(client_id) logger.info(f"Client model loaded from {client_id}") diff --git a/fedn/network/combiner/aggregators/splitlearningagg.py b/fedn/network/combiner/aggregators/splitlearningagg.py index eced9030e..68f58eaee 100644 --- a/fedn/network/combiner/aggregators/splitlearningagg.py +++ b/fedn/network/combiner/aggregators/splitlearningagg.py @@ -54,7 +54,7 @@ def __init__(self, update_handler): def combine_models(self, helper=None, delete_models=True): """Concatenates client embeddings in the queue by aggregating them. - After all embeddings are received, the embeddings need to be sorted + After all embeddings are received, the embeddings need to be sorted (consistently) by client ID. :param helper: An instance of :class: `fedn.utils.helpers.helpers.HelperBase`, ML framework specific helper, defaults to None diff --git a/fedn/network/controller/control.py b/fedn/network/controller/control.py index 990bccd2f..de65d3363 100644 --- a/fedn/network/controller/control.py +++ b/fedn/network/controller/control.py @@ -296,7 +296,7 @@ def splitlearning_session(self, config: RoundConfig) -> None: if self.get_session_status(config["session_id"]) == "Started": self.set_session_status(config["session_id"], "Finished") - self._state = ReducerState.idle + self._state = ReducerState.idle def round(self, session_config: RoundConfig, round_id: str): """Execute one global round.