This README describes the Named Entity Recognition (NER) demo application that uses a CONLL2003-tuned BERT model for inference.
On startup the demo application reads command line parameters and loads a network to Inference engine. It also fetch data from the user-provided url to populate the "context" text. The text is then used to search named entities.
The list of models supported by the demo is in <omz_dir>/demos/bert_named_entity_recognition_demo/python/models.lst
file.
This file can be used as a parameter for Model Downloader and Converter to download and, if necessary, convert models to OpenVINO Inference Engine format (*.xml + *.bin).
An example of using the Model Downloader:
omz_downloader --list models.lst
An example of using the Model Converter:
omz_converter --list models.lst
- bert-base-ner
NOTE: Refer to the tables Intel's Pre-Trained Models Device Support and Public Pre-Trained Models Device Support for the details on models inference support at different devices.
Running the application with the -h
option yields the following usage message:
usage: bert_named_entity_recognition_demo.py [-h] -v VOCAB -m MODEL -i INPUT
[--adapter {openvino,ovms}]
[--input_names INPUT_NAMES]
[-d DEVICE]
Options:
-h, --help Show this help message and exit.
-v VOCAB, --vocab VOCAB
Required. Path to the vocabulary file with tokens
-m MODEL, --model MODEL
Required. Path to an .xml file with a trained model or
address of model inference service if using OVMS adapter.
-i INPUT, --input INPUT
Required. URL to a page with context
--adapter {openvino,ovms}
Optional. Specify the model adapter. Default is
openvino.
--input_names INPUT_NAMES
Optional. Inputs names for the network. Default values
are "input_ids,attention_mask,token_type_ids"
-d DEVICE, --device DEVICE
Optional. Target device to perform inference
on. Default value is CPU
-nireq NUM_INFER_REQUESTS, --num_infer_requests NUM_INFER_REQUESTS
Optional. Number of infer requests.
-nstreams NUM_STREAMS, --num_streams NUM_STREAMS
Optional. Number of streams to use for inference on
the CPU or/and GPU in throughput mode (for HETERO and
MULTI device cases use format
<device1>:<nstreams1>,<device2>:<nstreams2> or just
<nstreams>).
-nthreads NUM_THREADS, --num_threads NUM_THREADS
Optional. Number of threads to use for inference on
CPU (including HETERO cases).
The application reads text from the HTML page at the given URL. The model and its parameters (inputs and outputs) are also important demo arguments. Notice that since order of inputs for the model does matter, the demo application checks that the inputs specified from the command-line match the actual network inputs.
The application outputs recognized named entities (LOC
- location, PER
- person, ORG
- organization, MISC
- miscellaneous) for each sentence in input text.
The application reports
- Latency: total processing time required to process input data (from loading the vocab and processing the context as tokens to displaying the results).
You can use the following command to try the demo (assuming the model from the Open Model Zoo, downloaded and converted with the Model Downloader executed with "--name bert*"):
python3 bert_named_entity_recognition_demo.py.py
--vocab=<models_dir>/models/public/bert-base-ner/vocab.txt
--model=<path_to_model>/bert-base-ner.xml
--input_names="input_ids,attention_mask,token_type_ids"
--input="https://en.wikipedia.org/wiki/Bert_(Sesame_Street)"
You can also run this demo with model served in OpenVINO Model Server. Refer to OVMSAdapter
to learn about running demos with OVMS.
Exemplary command:
python3 bert_named_entity_recognition_demo.py.py
--vocab=<models_dir>/models/public/bert-base-ner/vocab.txt
--model=localhost:9000/models/bert
--input_names="input_ids,attention_mask,token_type_ids"
--input="https://en.wikipedia.org/wiki/Bert_(Sesame_Street)"
--adapter ovms
Notice that when the original "context" (text from the url) do not fit the model input (128 for the Bert-Base), the demo reshapes model to maximum sentence length in the "context".