-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_train.py
106 lines (95 loc) · 5.13 KB
/
run_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from libs import *
get_seed(1127802)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"\nUsing {device}\n")
h = 1/201
def main():
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--model', type=str, default='unets', metavar='model',
help='training model name, uit (integral transformer), ut (with traditional softmax normalization), hut (hybrid ut with linear attention), xut (cross-attention with hadamard product interaction), fno2d (Fourier neural operator 2d), unet (traditional UNet with CNN, big baseline, 33m params), unets (UNet with the same number of layers with U-integral transformer). default: unets)')
parser.add_argument('--parts', nargs='+', default=[p for p in range(4, 7)],
help='parts of data used in training/evaluation. default: [4, 5, 6]')
parser.add_argument('--plot-index', type=int, default=6, metavar='idx_draw',
help='the index of the inclusion to plot (default: 6)')
parser.add_argument('--channels', type=int, default=1, metavar='num_chan',
help='the number of channels of feature maps (default: 1)')
parser.add_argument('--subsample', type=int, default=1, metavar='sample_scaling',
help='subsample scale, subsample=2 means (101,101) input (default: 1)')
parser.add_argument('--batch-size', type=int, default=10, metavar='batch_size',
help='batch size for testing set (default: 10)')
parser.add_argument('--epochs', type=int, default=50, metavar='epochs',
help='number of epochs (default: 50)')
parser.add_argument('--patience', type=int, default=15, metavar='patience',
help='early stopping epochs (default: 15)')
parser.add_argument('--lr', type=float, default=0.001, metavar='learning_rate',
help='maximum learning rate (default: 1e-3)')
parser.add_argument('--no-grad-channel', action='store_true', default=False)
args = parser.parse_args()
config = load_yaml(r'./configs.yml', key=args.model)
print("="*10+"Model setting:"+"="*10)
for a in config.keys():
if not a.startswith('__'):
print(f"{a}: {config[a]}")
print("="*33)
if args.model in ["uit", "uit-c3", "uit-c", "ut", "xut"]:
from libs.ut import UTransformer
model = UTransformer(**config)
elif args.model in ["hut"]:
from libs.hut import HybridUT
model = HybridUT(**config)
elif args.model in ["fno2d", "fno2d-big"]:
from libs.fno import FourierNeuralOperator
model = FourierNeuralOperator(**config)
elif args.model in ["unet", "unet-small"]:
from libs.unet import UNet
model = UNet(**config)
else:
raise NotImplementedError
print(f"\nTraining for {model.__class__.__name__} with {get_num_params(model)} params\n")
model.to(device);
train_dataset = EITDataset(part_idx=args.parts,
file_type='h5',
subsample=args.subsample,
channel=args.channels,
return_grad=not args.no_grad_channel,
online_grad=False,
train_data=True,)
train_loader = DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
pin_memory=True)
valid_dataset = EITDataset(part_idx=args.parts,
file_type='h5',
channel=args.channels,
return_grad=not args.no_grad_channel,
online_grad=False,
subsample=args.subsample,
train_data=False)
valid_loader = DataLoader(valid_dataset,
batch_size=args.batch_size,
shuffle=False,
drop_last=False,
pin_memory=True)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
scheduler = OneCycleLR(optimizer, max_lr=args.lr,
div_factor=1e3, final_div_factor=1e4,
steps_per_epoch=len(train_loader),
pct_start=0.2, epochs=args.epochs)
loss_func = CrossEntropyLoss2d(regularizer=False, h=h, gamma=0.1)
metric_func = L2Loss2d(regularizer=False)
result = run_train(model, loss_func, metric_func,
train_loader, valid_loader,
optimizer, scheduler,
train_batch=train_batch_eit,
validate_epoch=validate_epoch_eit,
epochs=args.epochs,
patience=args.patience,
model_name=config.weights_filename+".pt",
result_name=config.weights_filename+".pkl",
tqdm_mode='batch',
mode='min',
device=device)
print("Training done.")
if __name__ == "__main__":
main()